1 Ashcroft, A.L., Cheetham, A.K., Ford, J.S., Green, M.L.H., Grey, C.P.G., Murrell, A.J., Vernon, P.D.F., “Selective oxidation of methane to synthesis gas using transition metal catalysts”, Nature, 344 (6264), 319-321 (1990). 2 Sherif, S.A., Barbir, F., Veziroglu, T.N., “Wind energy and the hydrogen economy-Review of the technology”, Solar Energy, 78 (5), 647-660 (2005). 3 Ersoz, A., Olgun, H., Ozdogan, S., Gungor, C., Akgun, F., Tiris, M., “Autothermal reforming as a hydrocarbon fuel processing option for PEM fuel cell”, J. Power Sources, 118 (1/2), 384-392 (2003). 4 Bingue, J.P., Saveliev, A.V., Kennedy, L.A., “Optimization of hydrogen production by filtration combustion of methane by oxygen enrichment and depletion”, Int. J. Hydrogen Energy, 29 (13), 1365-1370 (2004). 5 Bingue, J.P., Saveliev, A.V., Fridman, A.A., Kennedy, L.A., “Hydrogen production in ultra-rich filtration combustion of methane and hydrogen sulfide”, Int. J. Hydrogen Energy, 27 (6), 643-649 (2002). 6 Mjaanes, H.P., Chan, L., Mastorakos, E., “Hydrogen production in porous media”, Int. J. Hydrogen Energy, 30 (6), 579-592 (2005). 7 Veynante, D., Vervisch, L., “Turbulent combustion modeling”, Prog. Energy Combust. Sci., 28 (3), 193-266 (2002). 8 Hsu, P.F., Matthews, R.D., “The necessity of using detailed kinetics in models for premixed combustion within porous media”, Combust. Flame, 93 (4), 457-466 (1993). 9 Hackert, C.L., Ellzey, J.L., Ezekoye, O.A., “Combustion and heat transfer in model two-dimensional porous burner”, Combust. Flame, 116 (1/2), 177-191 (1999). 10 Eisfeld, B., Schnitzlein, K., “A new pseudo-continuous model for the fluid flow in packed beds”, Chem. Eng. Sci., 60 (15), 4105-4117 (2005). 11 Mao, K., Wang, M.Y., Xu, Z., Chen, T., “DEM simulation of particle damping”, Powder Technol., 142 (2/3), 154-165 (2004). 12 Yoshiawa, Y., Sasaki, K., Echigo, R., “Analytical study of the structure of ration controlled flame”, Int. J Heat Mass Transf., 31 (2), 311-319 (1988). 13 Hsu, P.F., Howell, J.R., Matthews, R.D., “A numerical investigation of premixed combustion within porous inert media”, J. Heat Transf., 115 (3), 744-750 (1993). 14 Mohamad, A.A., Ramadhyani, S., Viskanta, R., “Modeling of combustion and heat transfer in a packed bed with embedded coolant tubes”, Int. J Heat Mass Transf., 37 (8), 1181-1191 (1994). 15 Brenner, G., Pickenacker, K., Pickenacker, O., Trimis, D., Wawrzinek, K., Weber, T., “Numerical and experimental investigation of matrix-stabilized methane/air combustion in porous inert media”, Combust. Flame, 123 (1), 201-213 (2000). 16 Lü, Z.H., Sun, S.C., “Prediction of the premixed flame burning rates within porous media”., J. Combust. Sci. Technol., 4 (3), 242-246 (1998). (in Chinese) 17 Xie, M.Z., Du, L.M., Sun, W.C., “Advances and prospects of superadiabatic combustion in porous media with reciprocating flow”, J. Combust. Sci. Technol., 8 (6), 520-524 (2002). (in Chinese) 18 Du, L.M., Xie, M.Z., “Numerical simulation on reciprocating superadiabatic combustion of premixed gases in porous media”, J. Combust. Sci. Technol., 11 (3), 230-235 (2005). (in Chinese) 19 Zhao, P.H., Chen, Y.L., Liu, M.H., “Investigation of combustion in a porous medium for different reaction mechanisms and dispersion effects”, J. Univ. Sci. Technol. (China), 36 (10), 1051-1056 (2006). (in Chinese) 20 Li, G.N., Zhou, H., Qian, X.P., Ling, Z.Q., Cen, K.F., “Modeling hydrogen production in super-adiabatic combustion of hydrogen sulfide in porous media”, J. Chem. Ind. Eng. (China), 57 (9), 2175-2179 (2006). (in Chinese) 21 Ling, Z.Q., Zhou, H., Qian, X.P., Li, G.N., Cen, K.F., “Numerical simulation of hydrogen production in porous media from hydrogen sulfide by partial oxidation”, Acta Sci. Circumstantiae, 26 (1), 22-26 (2006). (in Chinese) 22 Shackelford, J., Alexande, W., Pork, J.S., CRC Materials Science and Engineering Handbook, CRC Press Inc., New York (2002). 23 Ergun, S., “Fluid flow through packed columns”, Proc. Inst. Mech. Eng., 48 (2), 89-94 (1952). 24 Kuwahara, F., Yamane, T., Nakayama, A., “Large eddy simulation of turbulent flow in porous media”, Int. Commun. Heat Mass Transf., 33 (4), 411-418 (2006). 25 Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Vitali, J., Lissianski, V., Qin, Z., “GRI-Mech 3.0”, http://www.me.berkeley.edu/gri_mech/ (2000). 26 Chen, J.Y., “Development of reduced mechanisms for numerical modeling of turbulent combustion”, In: Workshop on Numerical Aspects of Reduction in Chemical Kinetics, France (1997). 27 Sung, C.J., Law, C.K., Chen, J.Y., “Augmented reduced mechanisms for NO emission in methane oxidation”, Combust. Flame, 125 (1/2), 906-919 (2001). 28 Glarborg, P., Miller, J.A., Kee, B.J., “Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors”, Combust. Flame, 65 (2), 177-202 (1986). 29 Bilger, R.W., Stamer, S.H., Kee, R.J., “On reduced mechanisms for methane-air combustion in non-premixed flames”, Combust. Flame, 80 (2), 135-149 (1990). 30 Xu, M., Fan, Y., Yuan, J., “Simplification of the mechanism of NOX formation in a CH4/air combustion system”, Int. J. Energy Res., 23 (14), 1267-1276 (1999). 31 Kazakov, A., Frenklach, M., “DRM9 and DRM22”, http://www.me.berkeley.edu/drm/ (1994). |