[1] M.H. Sun, S.Z. Huang, L.H. Chen, Y. Li, X.Y. Yang, Z.Y. Yuan, B.L. Su, Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine, Chem. Soc. Rev. 45 (12) (2016) 3479-3563 [2] A. Busch, Y. Gensterblum, CBM and CO2-ECBM related sorption processes in coal:a review, Int. J. Coal Geol. 87 (2) (2011) 49-71 [3] V. Reitenbach, L. Ganzer, D. Albrecht, B. Hagemann, Influence of added hydrogen on underground gas storage:a review of key issues, Environ. Earth Sci. 73 (11) (2015) 6927-6937 [4] M.D. Aminu, S.A. Nabavi, C.A. Rochelle, V. Manovic, A review of developments in carbon dioxide storage, Appl. Energy 208 (2017) 1389-1419 [5] S. Rani, E. Padmanabhan, B.K. Prusty, Review of gas adsorption in shales for enhanced methane recovery and CO2 storage, J. Petroleum Sci. Eng. 175 (2019) 634-643 [6] R. Tarkowski, Underground hydrogen storage:characteristics and prospects, Renew. Sustain. Energy Rev. 105 (2019) 86-94 [7] D. Zivar, S. Kumar, J. Foroozesh, Underground hydrogen storage:A comprehensive review, Int. J. Hydrog. Energy 46 (45) (2021) 86-94 [8] S. Brandani, E. Mangano, L. Sarkisov, Net, excess and absolute adsorption and adsorption of helium, Adsorption 22 (2) (2016) 261-276 [9] A. Mitropoulos, The kelvin equation, J. Colloid Interface Sci. 317 (2) (2008) 643-648 [10] T. Horikawa, D.D. Do, D. Nicholson, Capillary condensation of adsorbates in porous materials, Adv. Colloid Interface Sci. 169 (1) (2011) 40-58 [11] E. Barsotti, S.P. Tan, S. Saraji, M. Piri, J.H. Chen, A review on capillary condensation in nanoporous media:implications for hydrocarbon recovery from tight reservoirs, Fuel 184 (2016) 344-361 [12] K. Cychosz Struckhoff, M. Thommes, L. Sarkisov, On the universality of capillary condensation and adsorption hysteresis phenomena in ordered and crystalline mesoporous materials, Adv. Mater. Interfaces 7 (12) (2020) 2000184 [13] G.R. Chalmers, R.M. Bustin, I.M. Power, Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units, AAPG Bull. 96 (6) (2012) 1099-1119 [14] U. Kuila, M. Prasad, Specific surface area and pore-size distribution in clays and shales, Geophys. Prospect. 61 (2) (2013) 341-362 [15] M. Gasparik, A. Ghanizadeh, P. Bertier, Y. Gensterblum, S. Bouw, B.M. Krooss, High-pressure methane sorption isotherms of black shales from the Netherlands, Energy Fuels 26 (8) (2012) 4995-5004 [16] Y. Belmabkhout, M. Frère, G. De Weireld, High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods, Meas. Sci. Technol. 15 (5) (2004) 848-858 [17] ISO/TC 24/SC 4 Particle Characterization Technical Committee, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 2:Analysis of nanopores by gas adsorption, ISO 15901-2:2006. [18] ISO/TC 24/SC 4 Particle Characterization Technical Committee, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption-Part 3:Analysis of micropores by gas adsorption, ISO 15901-3:2007. [19] D.P. Broom, The accuracy of hydrogen sorption measurements on potential storage materials, Int. J. Hydrog. Energy 32 (18) (2007) 4871-4888 [20] M. Gasparik, T.F.T. Rexer, A.C. Aplin, P. Billemont, G. de Weireld, Y. Gensterblum, M. Henry, B.M. Krooss, S.B. Liu, X.Z. Ma, R. Sakurovs, Z.G. Song, G. Staib, K.M. Thomas, S.B. Wang, T.W. Zhang, First international inter-laboratory comparison of high-pressure CH4, CO2 and C2H6 sorption isotherms on carbonaceous shales, Int. J. Coal Geol. 132 (2014) 131-146 [21] A. Busch, Y. Gensterblum, B.M. Krooss, N. Siemons, Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals:an experimental study, Int. J. Coal Geol. 66 (1-2) (2006) 53-68 [22] J.D.N. Pone, P.M. Halleck, J.P. Mathews, Sorption capacity and sorption kinetic measurements of CO2 and CH4 in confined and unconfined bituminous coal, Energy Fuels 23 (9) (2009) 4688-4695 [23] S. Hol, C.J. Spiers, Competition between adsorption-induced swelling and elastic compression of coal at CO2 pressures up to 100 MPa, J. Mech. Phys. Solids 60 (11) (2012) 1862-1882 [24] G. De Weireld, M. Frère, R. Jadot, Automated determination of high-temperature and high-pressure gas adsorption isotherms using a magnetic suspension balance, Meas. Sci. Technol. 10 (2) (1999) 117-126 [25] F. Dreisbach, H.W. Lösch, Magnetic suspension balance for simultaneous measurement of a sample and the density of the measuring fluid, J. Therm. Anal. Calorim. 62 (2) (2000) 515-521 [26] L. Hamon, M. Frère, G. Weireld, Development of a new apparatus for gas mixture adsorption measurements coupling gravimetric and chromatographic techniques, Adsorption 14 (4-5) (2008) 493-499 [27] M.J. Benham, D.K. Ross, Experimental determination of absorption-desorption isotherms by computer-controlled gravimetric analysis, Zeitschrift Für Physikalische Chemie 163 (1) (1989) 25-32 [28] S. Day, G. Duffy, R. Sakurovs, S. Weir, Effect of coal properties on CO2 sorption capacity under supercritical conditions, Int. J. Greenh. Gas Control 2 (3) (2008) 342-352 [29] S. Day, R. Sakurovs, S. Weir, Supercritical gas sorption on moist coals, Int. J. Coal Geol. 74 (3-4) (2008) 203-214 [30] Barsotti, E., S. Saraji, S. P. Tan, and M. Piri. "Capillary condensation of binary and ternary mixtures of n-Pentane-Isopentane-CO2 in nanopores." Langmuir 34(5) (2018):1967-1980 [31] D.C. Bonner, Y.L. Cheng, A new method for determination of equilibrium sorption of gases by polymers at elevated temperatures and pressures, J. Polym. Sci. B Polym. Lett. Ed. 13 (5) (1975) 259-264 [32] Y. Hussain, Y.T. Wu, P.J. Ampaw, C.S. Grant, Dissolution of polymer films in supercritical carbon dioxide using a quartz crystal microbalance, J. Supercrit. Fluids 42 (2) (2007) 255-264 [33] H.T. Schaef, J.S. Loring, V.A. Glezakou, Q.R.S. Miller, J. Chen, A.T. Owen, M.S. Lee, E.S. Ilton, A.R. Felmy, B.P. McGrail, C.J. Thompson, Competitive sorption of CO2 and H2O in 2:1 layer phyllosilicates, Geochimica Cosmochimica Acta 161 (2015) 248-257 [34] B.J. Briscoe, H. Mahgerefteh, A novel technique for the quantitative measurement of gaseous uptake in organic polymers at high pressures, J. Phys. E:Sci. Instrum. 17 (6) (1984) 483-487 [35] B.J. Briscoe, O. Lorge, A. Wajs, P. Dang, Carbon dioxide-poly(vinylidene fluoride) interactions at high pressure, J. Polym. Sci. B Polym. Phys. 36 (13) (1998) 2435-2447 [36] Z. Larson, Y. Cho, X.L. Yin, Experimental technique to measure mass under high pressure conditions using oscillatory motions of a spring-mass system, Meas. Sci. Technol. 28 (6) (2017) 065902 [37] F.B.H. Boukadi, R.W. Watson, O.O. Owolabi, The influence of reservoir rock properties on ultimate oil recovery in radial-core waterfloods, J. Can. Petroleum Technol. 33 (6) (1994) [38] R. Kareem, P. Cubillas, J. Gluyas, L. Bowen, S. Hillier, H.C. Greenwell, Multi-technique approach to the petrophysical characterization of Berea sandstone core plugs (Cleveland Quarries, USA), J. Petroleum Sci. Eng. 149 (2017) 436-455 [39] P.N. Sen, C. Straley, W.E. Kenyon, M.S. Whittingham, Surface-to-volume ratio, charge density, nuclear magnetic relaxation, and permeability in clay-bearing sandstones, GEOPHYSICS 55 (1) (1990) 61-69 [40] P.L. Churcher, P.R. French, J.C. Shaw, L.L. Schramm, Rock Properties of Berea Sandstone, Baker Dolomite, and Indiana LimestoneSPE International Symposium on Oilfield Chemistry. Anaheim, California. Society of Petroleum Engineers, (1991) [41] S.B. Shang, R.N. Horne, H.J. Ramey Jr, Water vapor adsorption on geothermal reservoir rocks, Geothermics 24 (4) (1995) 523-540 [42] P. Lai, K. Moulton, S. Krevor, Pore-scale heterogeneity in the mineral distribution and reactive surface area of porous rocks, Chem. Geol. 411 (2015) 260-273 [43] Y. Cho, E. Eker, I. Uzun, X.L. Yin, H. Kazemi, Rock Characterization in Unconventional Reservoirs:A Comparative Study of Bakken, Eagle Ford, and Niobrara FormationsAll Days. May 5-6, 2016. Denver, Colorado, USA. SPE, (2016) [44] A. Kamruzzaman, M. Prasad, S. Sonnenberg, Petrophysical Rock Typing in Unconventional Shale Plays:The Niobrara Formation Case StudyProceedings of the 7th Unconventional Resources Technology Conference. July 22-24, 2019. Denver, Colorado, USA. Tulsa, OK, USA:American Association of Petroleum Geologists, (2019) [45] E.W. Lemmon, M.O. McLinden, D.G. Friend, Thermophysical Properties of Fluid Systems, in:P.J. Linstrom, W.G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899. Data retrieved in 2018. [46] P. Chareonsuppanimit, S.A. Mohammad, R.L. Robinson Jr, K.A.M. Gasem, High-pressure adsorption of gases on shales:measurements and modeling, Int. J. Coal Geol. 95 (2012) 34-46 [47] W.C. Lyons, G.J. Plisga, M.D. Lorenz. Standard Handbook of Petroleum and Natural Gas Engineering, Amsterdam:Elsevier, 2016 [48] J.H. Zhao, Z.J. Jin, Q.H. Hu, Z.K. Jin, T.J. Barber, Y.X. Zhang, M. Bleuel, Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs, Sci. Rep. 7 (1) (2017) 15413 |