1 Huff, G.A., Vasalos, I.A., “Oxidative pyrolysis of natural gas in a spouted-bed reactor:Reaction stoichiometry and experimental reactor design”, Catal. Today, 46, 223-231(1998). 2 Liu, C., Mallinson, R., Lobban, L., “Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma”, J. Catal., 17, 326-334(1998). 3 Kearns, D.T., Webley, P.A., “Application of an adsorption non-flow exergy function to an exergy analysis of a pressure swing adsorption cycle”, Chem. Eng. Sci., 59, 3537-3557(2004). 4 Chang, H., Li, J., “A new exergy method for process analysis and optimization”, Chem. Eng. Sci., 60, 2771-2784 (2005). 5 Sorin, M., Bonhiver, J.C., Paris, J., “Exergy efficiency and conversion of chemical reaction”, Energy Convers. Mgmt., 39 (16), 1863-1868 (1998). 6 Fratzscher, W., “The exergy method of thermal plant analysis”, Int. J. Refrig., 20 (5), 374 (1997). 7 Bargigli, S., Raugei, M., Ulgiati, S., “Comparison of thermodynamic and environmental indexes of natural gas, syngas and hydrogen production processes”, Energy, 29, 2145-2159 (2004). 8 Rosen, M.A., “Comparative assessment of thermodynamic efficiencies and losses for natural gas-based production processes for hydrogen, ammonia and methanol”, Energy Convers. Mgmt., 37 (3), 359-367 (1996). 9 Kirova-Yordanova, Z., “Exergy analysis of industrial ammonia synthesis”, Energy, 29, 2373-2384 (2004). 10 Ptasinski, K.J., Hamelinck, C., Kerkhof, P.J.A.M., “Exergy analysis of methanol from the sewage sludge process”, Energy Convers. Mgmt., 43, 1445-1457 (2002). 11 Geuzebroek, F.H., Schneiders, L.H.J.M., Kraaijveld, G.J.C., Feron, P.H.M., “Exergy analysis of alkanolamine-based CO2 removal unit with Aspen Plus”, Energy, 29, 1241-1248 (2004). 12 Yang, B.L., Wu, J., Zhao, G.S., Wang, H.J., Lu, S.G., “Multiplicity analysis in reactive distillation column using Aspen Plus”, Chin. J. Chem. Eng., 14 (3), 301-308 (2006). 13 Hou, W.F., Su, H.Y., Hu, Y.Y., Chu, J., “Modeling, simulation and optimization of a whole industrial catalytic naphtha reforming process on Aspen Plus platform”, Chin. J. Chem. Eng., 14 (5), 584-591 (2006). 14 Zhao, Y.H., Wen, H., Guo, Z.C., Xu, Z.H., “Development of a fuel-flexible co-gasification technology”, Chin. J. Chem. Eng., 13 (1), 96-101 (2005). 15 Yen, C.Y., Process Economics Program (PEP) Report 16A:Acetylene SRI Consulting, California (1981). 16 Yao, S., Nakayama, A., Suzuki, E., “Acetylene and hydrogen from pulsed plasma conversion of methane”, Catal. Today, 71, 219-223 (2001). 17 Hinderink, A.P., Kerkhof, F.P., de Swaan Arons, J., van der Kooi, H. J., “Exergy analysis with a flow sheeting simulator (I) theory; calculating exergies of material streams”, Chem. Eng. Sci., 51, 4693-4700 (1996). 18 Denbigh, K.G., “The second-law efficiency of chemical processes”, Chem. Eng. Sci., 6 (1), 1-9 (1956). 19 Kameyama, H., Yoshida, K., Yamauchi, S., “Evaluation of reference exergies for the elements”, Appl. Energy, 11 (1), 69-83 (1982). 20 Campbell, F.T., Gerhartz, W., Yamamoto, Y.S., Ullmann's Encyclopedia of Industrial Chemistry, Vol. A1:Abrasives to Aluminum Oxide, Wiley-VCH, Weinheim (1985). 21 Hinderink, A.P., Kerkhof, F.P., de Swaan Arons, J., van der Kooi, H.J., “Exergy analysis with a flow sheeting simulator (Ⅱ) application; synthesis gas production from natural gas”, Chem. Eng. Sci., 51, 4701-4715 (1996). 22 Jiang, Y., Lim, M.S., Kim, D.H., “Simulation studies of the hydrogen production from methanol partial oxidation steam reforming by a tubular packed-bed catalytic reactor”, Chin. J. Chem. Eng., 9 (3), 297-305 (2001). 23 Troy, A.S., Lee, F.B., Rodney, L.B., Michael, A.I., “Equilibrium products from autothermal processes for generating hydrogen-rich fuel-cell feeds”, Int. J. Hydrogen Energy, 29, 1047-1064 (2004). |