1 Bader, H., Ringsdorf, H., Schmidt, B., “Watersoluble polymers in medicine”, Angew. Makromol. Chem., 123-124, 457-485 (1984). 2 Jones, M.C., Leroux, J.C., “Polymeric micelles—A new generation of colloidal drug carriers”, Eur. J. Pharm. Biopharm., 48 (2), 101-111 (1999). 3 Lemarchand, C., Gref, R., Couvreur, P., “Polysaccharide-decorated nanoparticles”, Eur. J. Pharm. Biopharm., 58 (2), 327-341 (2004). 4 Topp, M.D.C., Dijkstra, P., Talsma, H., Feijen, J., “Thermosensitive micelle-forming block copolymers of poly (ethylene glycol) and poly(N-isopropylacrylamide)”, Macromolecules, 30 (26), 8518-8520 (1997). 5 Soliman, G.M., Winnik, F.M., “Enhancement of hydrophilic drug loading and release characteristics through micellization with new carboxymethyldextran-PEG block copolymers of tunable charge density”, Int. J. Pharm., 356 (1/2), 248-258 (2008). 6 Scholz, C., Iijima, M., Nagasaki, Y., Kataoka, K., “A novel reactive polymeric micelle with aldehyde groups on its surface”, Macromolecules, 28 (20), 7295-7297 (1995). 7 Kunii, R., Onishi, H., Machida, Y., “Preparation and antitumor characteristics of PLA/(PEG-PPG-PEG) nanoparticles loaded with camptothecin”, Eur. J. Pharm. Biopharm., 67 (1), 9-17 (2007). 8 Kamachi, M., Kurihara, M., Stille, J.K., “Synthesis of block polymers for desalination membranes. Preparation of block copolymers of 2-vinylpyridine and methacrylic acid or acrylic acid”, Macromolecules, 5 (2), 161-167 (1972). 9 Ratajska, M., Boryniec, S., “Physical and chemical aspects of biodegradation of natural polymers”, React. Funct. Polym., 38 (1),35-49 (1998). 10 Wang, C.Q., Tan, H.M., Dong, Y.P., Shao, Z.Q., “Trimethylsilyl hydroxypropyl cellulose: Preparation, properties and as precursors to graft copolymerization of [epsilon]-caprolactone”, React. Funct. Polym., 66 (10), 1165-1173 (2006). 11 Vesterinen, E., Dobrodumov, A., Tenhu, H., “Spin-labeled polyelectrolyte gels based on poly(N-isopropylacrylamide). Effects of the network structure and the gel collapse on the EPR spectra”, Macromolecules, 30 (5), 1311-1316 (1997). 12 Qiu, X., Wu, C., “Study of the core-shell nanoparticle formed through the ‘oil-to-globule’ transition of poly(N-isopropylacrylamide) grafted with poly(ethylene oxide)”, Macromolecules, 30 (25),7921-7926 (1997). 13 Chen, G.H., Hoffman, A.S., “Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH”, Nature, 373 (6509), 49-52 (1995). 14 Wei, H., Zhang, X.Z., Zhou, Y., Cheng, S.X., Zhuo, R.X., “Selfassembled thermoresponsive micelles of poly (N-isopropylacrylamideb-methyl methacrylate)”, Biomaterials, 27 (9), 2028-2034 (2006). 15 Huang, M.F., Jin, X., Li, Y., Fang, Y.E., “Syntheses and characterization of novel pH-sensitive graft copolymers of maleoylchitosan and poly (acrylic acid)”, React. Funct. Polym., 66 (10), 1041-1046 (2006). 16 Athawale, V.D., Lele, V., “Syntheses and characterisation of graft copolymers of maize starch and methacrylonitrile”, Carbohydr. Polym., 41 (4), 407-416 (2000). 17 Kim, S.Y., Cho, S.M., Lee, Y.M., Kim, S.J., “Thermoand pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide”, J. Appl. Polym. Sci., 78 (7), 1381-1391 (2000). 18 Kang, H.L., Liu, W.Y., He, B.Q., Shen, D.W., Ma, L., Huang, Y., “Synthesis of amphiphilic ethyl cellulose grafting poly(acrylic acid) copolymers and their self-assembly morphologies in water”, Polymer, 47 (23), 7927-7934 (2006). 19 Khan, A., “Preparation and characterization of N-isopropylacrylamide/ acrylic acid copolymer core-shell microgel particles”, J. Colloid Interface Sci., 313 (2), 697-704 (2007). 20 Martinez-Richa, A., “Variation of intrinsic viscosity in the hydrolysis of hydroxyethylcellulose, and its relationship with resistance to enzymatic degradation”, Polymer, 39 (14), 3115-3118 (1998). |