1 Lipinski, C., “Poor aqueous solubility-An industry wide problem in drug delivery”, Am. Pharm. Rev., 5, 82-85 (2002). 2 Radtke, M., “Pure drug nanoparticles for the formulation of poorly soluble drugs”, New Drugs, 3, 62-68 (2001). 3 Liversidge, G.G., Cundy, K.C., “Particle size reduction for improvement of oral bioavailability of hydrophobic drygs:I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs”, Int. J. Pharm., 125, 91-97 (1995). 4 Rawlings, E.A., Tindall, B., Bentley's Textbook of Pharmaceutics, Baillière Tindall London (1977). 5 Hu, J.H., Rogers, T.L., Brown, J., Young, T., Johnston, K.P., Williams, R.O., “Improvement of dissolution rates of poorly water soluble APIs using novel spray freezing into liquid technology”, Pharm. Res., 19, 1278-1284 (2002). 6 Rasenack, N., Müller, B.W., “Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs”, Pharm. Res., 19, 1894-900 (2002). 7 Ripple, E.G., Powders:Remington's Pharmaceutical Sciences, 17th Edition, Gennaro, A.R., eds., Mack Publishing Co., Easton, PA (1985). 8 Liversidge, G.G., Conzentino, P., “Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats”, Int. J. Pharm., 125, 309-313 (1995). 9 Vivek, K., Meenakshi, B., Harish, D., Deepak, K., “Nanoparticle technology for the delivery of poorly water-soluble drugs”, Pharm. Tech., 30 (2), 82-92 (2006). 10 Esclisa-Díaz, M.T., Guimaraens-Méndez, M., Pérez-Marcos, M.B., Vila-Jato, J.L., Torres-Labandeira, J.J., “Characterization and in vitro dissolution behaviour of ketoconazole/βand 2-hydroxypropyl-βcyclodextrin inclusion compounds”, Int. J. Pharm., 143, 203-210 (1996). 11 Elversson, J., Millqvist-Fureby, A., Alderborn, G., Elofsson, U., “Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying”, J. Pharm. Sci., 92, 900-910 (2003). 12 Domingo, C., Berends, E., van Rosmalen, G.M., “Precipitation of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle”, J. Supercrit. Fluids, 10, 39-55 (1997). 13 Reverchon, E., Porta, G.D., “Production of antibiotic microand nano-particles by supercritical anti-solvent precipitation”, Powder Tech., 106, 23-29 (1999). 14 Chattopadhyay, P., Gupta, R.B., “Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer”, Int. J. Pharm., 228, 19-31 (2001). 15 Violanto, M.R., Fischer, H.W., “Method for making uniformly sized particles from water-insoluble organic compounds”, US Pat., 4826689 (1989). 16 Ruch, F., Matijevi , E., “Preparation of micrometer size Budesonide particles by precipitation”, J. Colloid and Interf. Sci., 229, 207-211 (2000). 17 Cushing, B.L., Kolesnichenko, V.L., O'Connor, C.J., “Recent advances in the liquid-phase syntheses of inorganic nanoparticles”, Chem. Rev., 104, 3893-3946 (2004). 18 Mersmann, A., “Crystallization and precipitation”, Chem. Eng. & Process., 38, 345-353 (1999). 19 Grenman, H., Murzina, E., Ronnholm, M., Eranen, K., Mikkola, J.P., Lahtinen, M., Salmi, T., Murzin, D.Y., “Enhancement of solid dissolution by ultrasound”, Chem. Eng. & Process., 46, 862-869 (2007). 20 Rao, D.P., Bhowal, A., Goswami, P.S., “Process intensification in rotating packed beds (higee):An appraisal”, Ind. & Eng. Chem. Res., 43, 1150-1162 (2004). 21 Akay, G., Tong, L., Addleman, R., “Process intensification in particle technology:intensive granulation of powders by thermomechanically induced melt fracture”, Ind. & Eng. Chem. Res., 41, 5436-5446 (2002). 22 Chen, J.F., Wang, Y.H., Guo, F., Wang, X.M., Zheng, C., “Synthesis of nanoparticles with novel technology:high gravity reactive precipitation”, Ind. Eng. Chem. Res., 39, 948-954 (2000). 23 Hessel, V., Lowe, H., Schonfeld, F., “Micromixers-A review on passive and active mixing principles”, Chem. Eng. Sci., 60, 2479-2501 (2005). 24 Chen, J.F., Shao, L., “Mass production of nanoparticles by high gravity reactive precipitation technology with low cost”, China Particuology, 1, 64-69 (2003). 25 Chen, J.F., Zhou, M.Y., Shao, L., Wang, Y.Y., Yun, J., Chew, N.Y., Chan, H.K., “Feasibility of preparing nanodrugs by high-gravity reactive precipitation”, Int. J. Pharm., 269, 267-274 (2004). 26 Hu, T.T., Wang, J.X., Shen, Z.G., Chen, J.F., “Engineering of drug nanoparticles by HGCP for pharmaceutical applications”, Particuology, 6, 239-251 (2008). 27 Yang, H.J., Chu, G.W., Zhang, J.W., Shen, Z.G., Chen, J.F., “Micromixing efficiency in a rotating packed bed:Experiments and simulation”, Ind. Eng. Chem. Res., 44, 7730-7737 (2005). 28 Kucher, M., Babic, D., Kind, M., “Precipitation of barium sulfate:Experimental investigation about the influence of supersaturation and free lattice ion ratio on particle formation”, Chem. Eng. & Process., 45, 900-907 (2006). 29 Horn, D., Rieger, J., “Organic nanoparticles in the aqueous phase-theory, experiment, and use”, Angew. Chem. Int. Ed. Engl., 40, 4330-4361 (2001). 30 Dirksen, J.A., Ring, T.A., “Fundamentals of crystallization:kinetic effects on particle size distributions and morphology”, Chem. Eng. Sci., 46, 2389-2427 (1991). 31 Lobenberg, R., Amidon, G.L., Modern bioavailability, “bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards”, Eur. J. Pharm. Biopharm., 50, 3-12 (2000). |