1 Chern, J.M., Yang, S.P., “Oxygen transfer rate in a coarse-bubble diffused aeration system”, Ind. Eng. Chem. Res., 42, 6653-6660 (2003). 2 McWhirter, J.R., Chern, J.M., Huttefi, J.C., “Oxygen mass transfer fundamentals of surface aerators”, Ind. Eng. Chem. Res., 34, 2644-2654 (1995). 3 Bisio, A., Kabel, R.L., Scale-up of Chemical Processes-Conversion of Laboratory Scale Tests to Successful Commercial Size Design, John-Wiley & Sons (1995). 4 Bourne, J.R., Kozicki, F., Rys, P., “Mixing and fast chemical reaction (I) Test reactions to determine segregation”, Chem. Eng. Sci., 36, 1643 (1981). 5 Angst, W., Bourne, J.R., Sharma, R.N., “Mixing and fast chemical reaction (Ⅳ) The dimensions of the reaction zone”, Chem. Eng. Sci., 37, 585 (1982). 6 Podgorska, W., “Influence of micromixing on precipitation”, Ph.D. Thesis, Warsaw University of Technology (1993). 7 Wei, H., Wei, Z., Garside, J., “Computational fluid dynamics modeling of the precipitation process in a semibatch crystallizer”, Ind. Eng. Chem. Res., 40, 5255-5261 (2001). 8 Jaworski, Z., Nienow, A.W., “CFD modelling of continuous precipitation of barium sulphate in a stirred tank”, Chem. Eng. J., 91, 167-174 (2003). 9 Vicum, L., Ottiger, S., Mazzotti, M., Makowski, L., Ba dyga, J., “Multiscale modeling of a reactive mixing process in a semibatch stirred tank”, Chem. Eng. Sci., 59, 1767-1781 (2004). 10 Kresta, S., Anthieren, G., Parsiegla, K., “Model reduction for prediction of silver halide precipitation”, Chem. Eng. Sci., 60, 2135-2153 (2005). 11 Baldyga, J., Bourne, J.R., “Simplification of micromixing calculations (I) Derivation and application of new model”, Chem. Eng. J., 42, 83–92 (1989). 12 Phillips, R., Rohani, S., Ba dyga, J., “Micromixing in a single-feed semi-batch precipitation process”, AIChE J., 45, 82-92 (1999). 13 Ba dyga, J., Orciuch, W., “Barium sulphate precipitation in a pipe- An experimental study and CFD modeling”, Chem. Eng. Sci., 56, 2435–2444 (2001). 14 Villermaux. J., David, R., “Recent advances in the understanding of micromixing phenomena in stirred reactors”, Chem. Eng. Commun., 21, 105 (1983). 15 Rice, R.W., Baud, R.E., “The role of micromixing in the scale-up of geometrically similar batch reactors”, AIChE J., 36 (2), 293-298 (1990). 16 Ba dyga, J., Bourne, J.R., Turbulent Mixing and Chemical Reactions, Wiley, Chichester (1999). 17 Udaya, S.L., Shrma, K.V.N.S., Rao, A.R.K., “Effect of geometrical parameters for overall oxygen transfer coefficient”, In:Proc. Symp. on Environmental Hydraulics, University of Honking (1991). 18 Metcalf & Eddy Inc., Waste Water Engineering:Treatment Disposal and Reuse, Tata McGraw-Hill, New Delhi (2004). 19 Rao, A.R.K., Laxmi, B.V.B., Narasiah, K.S., “Simulation of oxygen transfer rates in circular aeration tanks”, Water Qual. Res. J. Canada, 39 (3), 237-244 (2004). 20 Rao, A.R.K., Kumar, B., “Scaling-up the geometrically similar unbaffled circular tank surface aerator”, Chem. Eng. Technol., 31 (2), 287-293 (2008). 21 Rao, A.R.K., “Prediction of reaeration rates in square, stirred tanks”, J. Environm. Eng., ASCE, 125 (3), 215-233 (1999). 22 Rao, A.R.K., Kumar, B., “Rectangular tank surface aerators:scale-up criteria and energy conservation”, Int. J. Environm. Sci. Technol., 3 (4), 427-435 (2006). 23 Rao, A.R.K., Kumar, B., “Scale-up criteria of square surface aerators”, Biotechnol. Bioeng., 96 (3), 464-470 (2007). |