1 Fu, Y., Chai, T.Y., “Nonlinear multivariable adaptive control using multiple models and neural Networks”, Automatica, 43, 1101-1110(2007). 2 Zhang, Y., Chen, Z.Q., Yang, P., Yuan, Z.Z., “Multivariable nonlinear proportional-integral-derivative decoupling control based on recurrent neural net works”, Chin. J. Chem. Eng., 12(5), 677-681(2004). 3 Wang, Z., Chen, Z.Z., Sun, Q.L., Yuan, Z.Z., “Multivariable decoupling predictive control based on QFT theory and application in CSTR chemical process”, Chin. J. Chem. Eng., 14(6), 765-769(2006). 4 Zhang, Q., Li, S., “Performance monitoring and diagnosis of multivariable model predictive control using statistical analysis”, Chin. J. Chem. Eng., 14(2), 207-215(2006). 5 Su, B.L, Chen, Z.Z., Yuan, Z.Z., “Multivariable decoupling predictive control with input constraints and its application on chemical process”, Chin. J. Chem. Eng., 14(2), 216-222(2006). 6 Widrow, B., W alach, E., Adaptive Inverse Control, Prentice Hall, New Jersey, US(1986). 7 Alolinwi, B., Khalil, H.k., “Robust adaptive output feedback control of nonlinear systems without persistence of excitation condition”, Automatica, 33, 2025-2032(1997). 8 Tong, S.C., Chai, T.Y., “Direct adaptive fuzzy output feedback control for uncertain nonlinear systems”, Control and Decision, 19(3), 257-261(2004). 9 Ge, S.S., Li, Y., Lee, T.H., “daptive NN control for a class of strict-feedback discrete-time nonlinear systems” Automatica, 39(5), 807-819(2003). 10 Miguel, A.B., Ton, J.J., Van, D.B., “Predictive control based on neural network model with I/O feedback linearization”, Int. J. Control, 72(17), 1358-1554(1999). 11 Song, Y., Chen, Z.Q., Yuan, Z.Z., “Neural network nonlinear predictive control based on tent-map chaos optimization”, Chin. J. Chem. Eng., 15(4), 539-544(2007). 12 Deng, H., Li, H.X., “A novel neural Approximate inverse control for unknown nonlinear discrete dynamical Systems”, IEEE Tran. System, Man, Cybernetics B:Cybernetics, 35(1), 115-123(2005). 13 He, P., Jagannathan, S., “Reinforcement learning-based output feedback control of nonlinear systems with input constraints”, IEEE Trans. Systems, Man, Cybernetics B, 35(1), 150-154(2005). 14 Hovakimyan, N., Nardi, F., Calise, A.J., “A novel error observer-based adaptive output feedback approach for control of uncertain systems”, IEEE Trans. Automatic Control, 47(8), 1310-1314(2002). 15 Kim, N., Calise, A.J., “Several extensions in methods for adaptive output feedback control”, IEEE Trans. Neural Networks, 18(2), 482-494(2007). 16 Zhai, L.F., Chai, T.Y., Ge, S.S., “Stable adaptive neural network control of nonaffine nonlinear discrete-time systems and application”, In:22th IEEE International Symposium on Intelligent Control, Singapore, 602-607(2007). 17 Juang, C.F., Chen, J.S., “A recurrent fuzzy-network-based inverse modelling method for a temperature system control”, IEEE trans. Systems, Man, Cybernetics C, 37(3), 410-417(2007). 18 Petlenkov, E., “NN-ANARX structure based dynamic output feedback linearization for control of nonlinear MIMO systems”, In:Mediterranean Conference on Control and Automation, Athens, Greece, T22-009(2007). 19 Delgado, A., “Dynamic recurrent neural networks for system identification and control”, IEE Proceedings Control Theory Applications, 142(4), 307-314(1995). 20 Li, W.C., Biegler, L.T., “Process control strategies for constrained nonlinear system”, Ind. Eng. Chem. Res., 27, 1611-1622(1988). |