1 Yuan, Y.G., Li, H.S., Data Rectification of Process Measurements, China PetroChemical Press, Beijing(1996). 2 Chen, J., Romagnoli, J.A., “A strategy for simultaneous dynamic data reconciliation and outlier detection”, Comp. Chem. Eng., 24(4/5), 559-562(1998). 3 Chen, J., Bandoni, A., Romagnoli, J.A., “Outlier detection in process plant data”, Comp. Chem. Eng., 22(4/5), 641-646(1998). 4 Zhou, L.K., Su, H.Y., Chu, J., “A new method to solve robust data reconciliation in nonlinear process”, Chin. J. Chem. Eng., 14(3), 357-363(2006). 5 zyurt, D.B., Pike, R.W., “Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes”, Comp. Chem. Eng., 28, 381-402(2004). 6 Faber, R., Li, B., Li, P., W zny, G., “Data reconciliation for real-time optimization of an industrial coke-oven-gas purification process”, Simulation Modeling Practice and Theory, 14, 1121-1134(2006). 7 Jiang, T.W., Chen, B.Z., He, X.R., “Industrial application of wavelet transform to the on-line prediction of side draw qualities of crude unit”, Comp. Chem. Eng., 24, 507-512(2000). 8 Narasimhan, S., Mah, R.S.H., “Generalized likelihood ratios for gross error identification in dynamic processes”, AIChE J., 34, 1321-1331(1988). 9 Kao, C.S., Tamhane, A.C., Mah, R.S.H., “Gross error detection in serially correlated process data(2) Dynamic systems”, Ind. Eng. Chem. Res., 31, 254-262(1992). 10 Rollins, D.K., Davis, J.F., “Unbiased estimation of gross errors in process measurements”, AIChE J., 38(4), 563-572(1992). 11 Rollins, D.K., Devanathan, S., “Unbiased estimation in dynamic data reconciliation”, AIChE J., 39, 1330-1334(1993). 12 Devanathan, S., Rollins, D.K., Vardeman, S.B., “A new approach for improved identification of measurement bias”, Comp. Chem. Eng., 24, 2755-2764 2000). 13 Bagajewicz, M. J., Jiang, Q., “Gross error modeling and detection in plant linear dynamic reconciliation”, Comp. Chem. Eng., 22, 1789-1809(1997). 14 Karjala, T.W., Himmelblau, D.M., “Dynamic rectification of data via recurrent neural nets and extended Kalman filter”, AIChE J., 42, 2225-2239(1996). 15 Vachhani, P., Rengaswamy, R., Venkatasubramanian, V., “A framework for integrating diagnositic knowledge with nonlinear optimization for data reconciliation and parameter estimation in dynamic system”, Chem. Eng. Sci., 56, 2133-2148(2001). 16 Liebman, M.J., Edgar, T.F., Lasdon, L.S., “Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques”, Comp. Chem. Eng., 16(10/11), 963-986(1992). 17 McBrayer, K.F., Edgar, T.F., “Bias detection and estimation in dynamic data reconciliation”, J. Process Control, 5(4), 285-289(1995). 18 Abu-el-zeet, Z.H., Becerra, V.M., Roberts, P.D., “Combined bias and outlier identification in dynamic data reconciliation”, Comp. Chem. Eng., 16, 921-935(2002). 19 Kong, M.F., Chen, B.Z., He, X.R., Hu, S.Y., “Gross error identification for dynamic system”, Comp. Chem. Eng., 29, 191-197(2004). 20 Downs, J.J., Vogel, E.F., “A plant-wide industrial process control problem”, Comp. Chem. Eng., 17(3), 245-255(1993). 21 Ricker, N.L., “Optimal steady-state operation of the Tennessee Eastman challenge process”, Comp. Chem. Eng., 19(9), 949-959(1995). 22 Ricker, N.L., Lee, J.H., “Nonlinear modeling and state estimation for the Tennessee Eastman challenge process”, Comp. Chem. Eng., 19(9), 983-1005(1995). 23 Tian, Z.H., Hoo, K.A., “Multiple model-based control of the TennesseeEastman process”, Ind. Eng. Chem. Res., 44, 3187-3202(2005). 24 Huber, P.J., Robust Statistics, Wiley, New York(1981). 25 Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A., Robust Statics:the Approach Based on Influence Functions, John Wiley & Sons, New York(1985). 26 Jiang, C.Y., Qiu, T., Chen, B.Z., Zhao, J.S., “An improved robust dynamic data reconciliation approach”, Comp. Appl. Chem., 24(10), 1297-1301(2007). |