1 International Energy Agency (IEA), Key World Energy Statistics 2008, IEA, Paris (2008). 2 Industrial Technology Research Institute, Taiwan Renewable Energy and Conventional Power Market, British Trade and Cultural Office, Taipei (2006). 3 Conesa, J.A., Font, R., Fullana, A., Caballero, J.A., “Kinetic model for the combustion of tyre wastes”, Fuel, 77, 1469-1475 (1998). 4 Conesa, J.A., Fullana, A., Font, R., “Thermal decomposition of meat and bone meal”, J. Anal. Appl. Pyrolysis, 70, 619-630 (2003). 5 Zheng, G., Koziński, J.A., “Thermal events occurring during the combustion of biomass residue”, Fuel, 79, 181-192 (2000). 6 Senneca, O., Chirone, R., Salatino, P., “A thermogravimetric study of nonfossil solid fuels (2) Oxidative pyrolysis and char combustion”, Energy Fuels, 16, 661-668 (2002). 7 Senneca, O., Chirone, R., Salatino, P., “Oxidative pyrolysis of solid fuels”, J. Anal. Appl. Pyrolysis, 71, 959-970 (2004). 8 Senneca, O., Chirone, R., Salatino, P., Nappi, L., “Patterns and kinetics of pyrolysis of tobacco under inert and oxidative conditions”, J. Anal. Appl. Pyrolysis, 79, 227-233 (2007). 9 Skodras, G., Grammelis, P., Basinas, P., Kakaras, E., Sakellaropoulos, G., “Pyrolysis and combustion characteristics of waste-derived feedstock”, Ind. Eng. Chem. Res., 45, 3791-3799 (2006). 10 Bilbao, R., Mastral, J.F., Aldea, M.E., Ceamanos, J., “Kinetic study for the thermal decomposition of cellulose and pine sawdust in an air atmosphere”, J. Anal. Appl. Pyrolysis, 39, 53-64 (1997). 11 Di Blasi, C., Lanzetta, M., “Intrinsic kinetics of isothermal xylan degradation in inert atmosphere”, J. Anal. Appl. Pyrolysis, 40/41, 287-303 (1997). 12 Reina, J., Velo, E., Puigjaner, L., “Thermogravimetric study of the pyrolysis of waste wood”, Thermochem Acta, 320, 161-167 (1998). 13 Lu, P., Chang, J., Wang, T., Wu, C., “A kinetic study on biomass fast catalytic pyrolysis”, Energy Fuels, 18, 1865-1869 (2004). 14 Burnham, A.K., Oh, M.S., Crawford, W., Samoun, A.M., “Pyrolysis of Argonne Premium coals:activation energy distribution and related chemistry”, Energy Fuels, 3, 42-55 (1989). 15 Varhegyi, G., Antal, Jr. M.J., Szekely, T., Szabo, P., “Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugar cane bagasse”, Energy Fuels, 3, 329-335 (1989). 16 Lakshmanan, C.C., White, N., “A new distributed activation energy model using Weibull distribution for the representation of complex kinetics”, Energy Fuels, 8, 1158-1167 (1994). 17 Várhegyi, G., Antal, Jr. M.J., Jakab, E., Szabó, P., “Kinetic modeling of biomass pyrolysis”, J. Anal. Appl. Pyrolysis, 42, 73-87 (1997). 18 Güne , M., Güne , S., “The influences of various parameters on the numerical solution of nonisothermal DAEM equation”, Thermochem. Acta, 336, 93-96 (1999). 19 Óórf o, J.J.M., Antunes, F.J.A., Figueiredo, J.L., “Pyrolysis kinetics of lignocellulosic material-Three independent reactions model”, Fuel, 78, 349-358 (1999). 20 Saade, R.G., Koziński, J.A., “Numerical modeling and TGA/FTIR/GCMS investigation of fibrous residue combustion”, Biomass Bioenergy, 18, 391-404 (2000). 21 Wilburn, F.W., “Kinetic of overlapping reactions”, Thermochem Acta, 354, 99-105 (2000). 22 Guo, J., Lua, A.C., “Kinetic study on pyrolysis process of oil-palm solid waste using two-step consecutive reaction model”, Biomass Bioenergy, 20, 223-233 (2001). 23 Gr?nli, M.G., Várhegyi, G., Di Blasi, C., “Thermogravimetric analysis and devolatilization kinetics of wood”, Ind. Eng. Chem. Res., 41, 4201-4208 (2002). 24 Vamvuka, D., Kastanaki, E., Lasithiotakis, M., “Devolatilization and combustion kinetics of low-rank coal blends from dynamic measurements”, Ind. Eng. Chem. Res., 42, 4732-4740 (2003). 25 Vamvuka, D., Pasadakis, N., Kastanaki, E., “Kinetic modeling of coal/agricultural by-product blends”, Energy Fuels, 17, 549-558 (2003). 26 Branca, C., Di Blasi, C., “Global intrinsic kinetics of wood oxidation”, Fuel, 83, 81-87 (2004). 27 Lapuerta, M., Hernández, J.J., Rodríguez, J., “Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis”, Biomass Bioenergy, 27, 385-391 (2004). 28 Várhegyi, G., Gr nli, M.G., Di Blasi, C., “Effects of sample origin, extraction, and hot-water washing on the devolatilization kinetics of chestnut wood”, Ind. Eng. Chem. Res., 43, 2356-2367 (2004). 29 Mészáros, E., Várhegyi, G., Jakab, E., Marosv lgyi, B., “Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation”, Energy Fuel, 18, 497-507 (2004). 30 Cai, J., He, F., Yi, W., Yao, F., “A new formula approximating the Arrhenius integral to perform the nonisothermal kinetics”, Chem. Eng. J., 124, 15-18 (2006). 31 Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D.H., Liang, D.T., “In-depth investigation of biomass pyrolysis based on three major components:Hemicellulose, cellulose and lignin”, Energy Fuels, 20, 388-393 (2006). 32 Hu, S., Jess, A., Xu, M., “Kinetic study of Chinese biomass slow pyrolysis:Comparison of different kinetic models”, Fuel, 86, 2778-2788 (2007). 33 Cai, J., Liu, R., “Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions:Application to simulated and real kinetic conversion data”, J. Phys. Chem. B, 111, 10681-10686 (2007). 34 Branca, C., Iannace, A., Di Blasi, C., “Devolatilization and combustion kinetics of Quercus cerris bark”, Energy Fuels, 21, 1078-1084 (2007). 35 Lapuerta, M., Hernández, J.J., Rodríguez, J., “Comparison between the kinetics of devolatilization of forestry ans agricultural wastes from the middle-south regions of Spain”, Biomass Bioenergy, 31, 13-19 (2007). 36 Müller-Hagedorn, M., Bockhorn, H., “Pyrolytic behavior of different biomasses (angiosperms) (maize plants, straws, and wood) in low temperature pyrolysis”, J. Anal. Appl. Pyrolysis, 79, 136-146 (2007). 37 Khalil, R.A., Mészáros, E., Gr nli, M.G., Várhegyi, G., Mohai, I., Marosv lgyi, B., Hustad, J.E., “Thermal analysis of energy crops (I) The applicability of macro-thermobalance for biomass studies”, J. Anal. Appl. Pyrolysis, 87, 52-59 (2008). 38 Cai, J., Liu, R., “Application of Weibull 2-mixture model to describe biomass pyrolysis kinetics”, Energy Fuels, 22, 675-678 (2008). 39 Grammelis, P., Basinas, P., Malliopoulou, A., Sakellaropoulos, G., “Pyrolysis kinetics and combustion characteristics of waste recovered fuels”, Fuel, 88, 195-205 (2009). 40 Bridgewater, A.V., Fast Pyrolysis of Biomass:A Handbook Vol. 3, CPL Press, Newbury, 121-146 (2005). 41 Burnham, A.K., Braun, R.L., “Global kinetic analysis of complex materials”, Energy Fuels, 13, 1-22 (1999). 42 Śesták, J., Berggren, G., “Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures”, Thermochim. Acta, 3, 1-12 (1971). 43 Janković, B., “Isothermal reduction kinetics of nickel oxide using hydrogen:Conventional and Weibull kinetic analysis”, J. Phy. Chem. Solid, 68, 2233-2246 (2007). 44 Bradbury, A.G.W., Sakai, Y., Shafizadeh, F., “A kinetic model for pyrolysis of cellulose”, J. App. Polym. Sci., 23, 3271-3280 (1979). 45 Sánchez, S., Ancheyta, J., McCaffrey, W.C., “Comparison of probability distribution functions for fitting distillation curves of petroleum”, Energy Fuels, 21, 2955-2963 (2007). 46 Weibull, W., “A statistical distribution function of wide applicability”, J. Appl. Mech. Trans. ASME, 18 (3), 293-297 (1951). 47 Rosin, P., Rammler, E., “Regularities in the size distribution of cement particles”, J. Inst. Fuel, 7, 29-33 (1933). 48 Cai, J., Liu, R., “Research on water evaporation in the process of biomass pyrolysis”, Energy Fuels, 21, 3695-3697 (2007). 49 Biagini, E., Simone, M., Tognotti, L., “Characterization of high heating rate chars of biomass fuels”, Proc. Combust. Ints., 32, 2043-2050 (2009). |