1 Twarowski, A., “The influence of phosphorus oxides and acids on the rate of H+OH recombination”, Combust. Flame, 94 (1-2), 91-107 (1993). 2 Twarowski, A., “Photometric determination of the rate of H2O formation from H and OH in the presence of phosphine combustion products”, Combust. Flame, 94 (4), 341-348(1993). 3 Twarowski, A., “Reduction of a phosphorus oxide and acid reaction set”, Combust. Flame, 102 (1-2), 41-54 (1995). 4 Korobeinichev, O.P., Ilyin, S.B., Mokrushin, V.V., Shmakov, A.G., “Destruction chemistry of dimethyl methylphosphonate in H2/O2/Ar flame studied by molecular beam mass spectrometry”, Combust. Sci. Tech., 116 (1-6), 51-67 (1996). 5 MacDonald, M.A., Gouldin, F.C., Fisher, E.M., “Temperature dependence of phosphorus-based flame inhibition”, Combust. Flame, 24 (4), 668-683 (2001). 6 Glaude, P.A., Melius, C.F., Pitz, W.J., Westbrook, C.K., “Detailed chemical kinetic reaction mechanisms for incineration of organophosphorus and fluoro-organophosphorus compounds”, Proc. Combust. Inst., 29, 2469-2476 (2002). 7 Korobeinichev, O.P., Shvartsberg, V.M., Shmakov, A.G., Bolshova, T.A., Jayaweera, T.M., Melius, C.F., Pitz, W.J., Westbrook, C.K., Curran, H., “Flame inhibition by phosphorus-containing compounds in lean and rich propane flames”, Proc. Combust. Inst., 30, 2353-2360 (2005). 8 Jayaweera, T.M., Melius, C.F., Pitz, W.J., Westbrook, C.K., Korobeinichev, O.P., Shvartsberg, V.M., Shmakov, A.G., Rybitskaya, I.V., Curran, H.J., “Flame inhibition by phosphorus-containing compounds over a range of equivalence ratios”, Combust. Flame, 140 (1-2), 103-115 (2005). 9 Liang, L., Stevens, J.G., Farrell, J.T., “A dynamic adaptive chemistry scheme for reactive flow computations”, Proc. Combust. Inst., 32, 527-534 (2009). 10 Nagy, T., Turányi, T., “Reduction of very large reaction mechanisms using methods based on simulation error minimization”, Combust. Flame, 156 (2), 417-428 (2009). 11 Bykov, V., Maas, U., “Extension of the ILDM method to the domain of slow chemistry”, Proc. Combust. Inst., 31, 465-472 (2007). 12 Okino, M.S., Mavrovouniotis, M.L., “Simplification of mathematical models of chemical reaction systems”, Chem. Rev., 98 (2), 391-408 (1998). 13 Lu, T. F., Law, C.K., “Linear time reduction of large kinetic mechanisms with directed relation graph:n-Heptane and iso-octane”, Combust. Flame, 144 (1-2), 24-36 (2006). 14 Lu, T.F., Law, C.K., “A directed relation graph method for mechanism reduction”, Proc. Combust. Inst., 30, 1333-1341 (2005). 15 König, K., Maas, U., “On-demand generation of reduced mechanisms based on hierarchically extended intrinsic low-dimensional manifolds in generalized coordinates”, Proc. Combust. Inst., 32, 553-560 (2009). 16 Laxminarasimhan, C.S., Verma, R.P., Ramachandran P.A., “Continuous lumping model for simulation of hydrocracking”, AIChE J., 42 (9), 2645-2653 (1996). 17 Martinez, E.C., “Lumping of components and reactions in complex reaction networks”, Chem. Eng. Commun., 93 (1), 1-24 (1990). 18 Li, G., Rabitz, H., “A general analysis of exact lumping in chemical kinetics”, J. Chem. Eng. Sci., 44 (6), 1413-1430 (1989). 19 Rabitz, H., Kramer, M., Dacol, D., “Sensitivity analysis in chemical kinetics”, Annu. Rev. Phys. Chem., 34, 419-461 (1983). 20 Turányi, T., “Sensitivity analysis of complex kinetic systems:Tools and applications”, J. Math. Chem., 5 (3), 203-248 (1990). 21 Turányi, T., Bérces, T., Vajda, S., “Reaction rate analysis of complex kinetic systems”, Int. J. Chem. Kinet., 21 (2), 83-99 (1989). 22 Tomlin, A.S., Pilling, M.J., Merkin, J.H., Brindley, J., Burgess, N., Gough, A., “Reduced mechanisms for propane pyrolysis”, Ind. Eng. Chem. Res., 34 (11), 3749-3760 (1995). 23 Tomlin, A.S., Pilling, M.J., Turányi, T., Merkin, J.H., Brindley, J., “Mechanism reduction for the oscillatory oxidation of hydrogen:Sensitivity and quasi-steady-state analyses”, Combust. Flame, 91, 107-130 (1992). 24 Rota, R., Bonini, F., Servida, A., Morbidelli, M., Carra, S., “Analysis of detailed kinetic schemes for combustion processes-application to a methane-ethane mixture”, Chem. Eng. Sci., 49, 4211-4221 (1994). 25 Maas, U., Pope, S.B., “Simplifying chemical kinetics:Intrinsic low-dimensional manifolds in composition space”, Combust. Flame, 88 (3-4), 239-264 (1992). 26 Maas, U., Pope, S.B., “Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds”, Proc. Combust. Inst., 24, 103-112 (1992). 27 Maas, U., Pope, S.B., “Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds”, Proc. Combust. Inst., 25, 1349-1356 (1994). 28 Goussis, D.A., Lam, S.H., “A study of homogeneous methanol oxidation kinetics using CSP”, Proc. Combust. Inst., 24, 113-120 (1992). 29 Massias, A., Diamantis, D., Mastorakos, E., Goussis, D.A., “An algorithm for the construction of global reduced mechanisms with CSP data”, Combust. Flame, 117 (4), 685-708 (1999). 30 Massias, A., Diamantis, D., Mastorakos, E., Goussis, D.A., “A global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data”, Combust. Theor. Model., 3 (2), 233-257 (1999). 31 Lu, T.F., Law, C.K., “On the applicability of directed relation graphs to the reduction of reaction mechanisms”, Combust. Flame, 146 (3), 472-483 (2006). 32 Zheng, X.L., Lu, T.F., Law, C.K., “Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene”, Proc. Combust. Inst., 31, 367-375 (2007). 33 LØvås, T., Nilsson, D., Mauss, F., “Automatic reduction procedure for chemical mechanisms applied to premixed methane/air flames”, Proc. Combust. Inst., 28, 1809-1815 (2000). 34 LØvås, T., Mauss, F., Hasse, C., Peters, N., “Development of adaptive kinetics for application in combustion systems”, Proc. Combust. Inst., 29, 1403-1410 (2002). 35 LØvås, T., Amnéus, P., Mauss, F., Mastorakos, E., “Comparison of automatic reduction procedures for ignition chemistry”, Proc. Combust. Inst., 29, 1387-1393 (2002). 36 Turányi, T., Tomlin, A.S., Pilling, M.J., “On the error of the quasi-steady-state approximation”, J. Phys. Chem., 97 (1), 163-172 (1993). 37 Rigopoulos, S., L v s, T., “A LOI-RCCE methodology for reducing chemical kinetics, with application to laminar premixed flames”, Proc. Combust. Inst., 32, 569-576 (2009). 38 LØvås, T., “Automatic generation of skeletal mechanisms for ignition combustion based on level of importance analysis”, Combust. Flame, 156 (7), 1348-1358 (2009). 39 Kee, R.J., Rupley, F.M., Miller, J.A., Chemkin-Ⅱ:A Fortran chemical kinetics package for the analysis of gas-phase chemical Kinetics, SAND89-8009, Sandia National Laboratories, USA (1989). 40 Kee, J.F., Grcar, M.D., Smooke, J.A., Miller, PREMIX:A Fortran program for modeling steady laminar one-dimensional premixed flames, SAND85-8240, Sandia National Laboratories, USA (1985). |