1 Huang, J.Z., Gu, L.J., “Technology for sulfur dioxides and nitrogen oxides removal from industrial flue gas”, Mod. Chem. Ind., 21, 44-47 (2001). 2 Fritz, A., Pitchon, V., “The current state of research on automotive lean NOx catalysis”, Appl. Catal. B Environ., 13, 1-25 (1997). 3 Tomasic, V., “Application of the monoliths in DeNOx catalysis”, Catal. Today, 119, 106-113 (2007). 4 Avila, P., Montes, M., Miro, E.E., “Monolithic reactors for environmental applications:A review on preparation technologies”, Chem. Eng. J., 109, 11-36 (2005). 5 Tomasic, V., Gomzi, Z., “Experimental and theoretical study of NO decomposition in a catalytic monolith reactor”, Chem. Eng. Process., 43, 765-774 (2004). 6 Cybulski, A., Stankiewicz, A., Albers, R.K.E., Moulijn, J.A., “Monolithic reactors for fine chemicals industries:A comparative analysis of a monolithic reactor and a mechanically agitated slurry reactor”, Chem. Eng. Sci., 54, 2351-2358 (1999). 7 Roy, S., Bauer, T., Al-Dahhan, M., Lehner, P., Turek, T., “Monoliths as multiphase reactors:A review”, AIChE J., 50, 2918-2938 (2004). 8 Meille, V., “Review on methods to deposit catalysts on structured surfaces”, Appl. Catal. A Gen., 315, 1-17 (2006). 9 Richter, M., Bentrup, U., Eckelt, R., Schneider, M., Pohl, M. M., Fricke, R., “ The effect of hydrogen on the selective catalytic reduction of NO in excess oxygen over Ag/Al2O3”, Appl. Catal. B Environ., 51, 261-274 (2004). 10 Pereira, C.J., Phumlee, K.M., “Grace Camet metal monolith catalytic emission control technologies”, Catal. Today, 13, 23-32 (1992). 11 Beeckman, J.W., Hegedus, L.L., “Design of monolith catalysts for power plant nitrogen oxide emission control”, Ind. Eng. Chem. Res., 30, 969-978 (1991). 12 Roduit, B., Wokaun, A., Baiker, A., “Global kinetic modeling of reactions occurring during selective catalytic reduction of NO by NH3 over vanadia/titania-based catalysts”, Ind. Eng. Chem. Res., 37, 4577-4590 (1998). 13 Yeh, J.T., Demski, R.J., Strakey, J.P., Joubert, J.I., “Combined SO2/NOx removal from flue gas”, Environ. Prog., 4, 223-228 (1985). 14 Centi, G., Passarini, N., Perathoner, S., Riva, A., “Combined DeSOx/DeNOx reactions on a copper on alumina sorbent-catalyst (1) Mechanism of SO2oxidation-adsorption”, Ind. Eng. Chem. Res., 31, 1947-1955 (1992). 15 Jeong, S.M., Kim, S.D., “Removal of NOx and SO2by CuO/Al2O3 sorbent/catalyst in a fluidized-bed reactor”, Ind. Eng. Chem. Res., 39, 1911-1915 (2000). 16 Chi, Y., Chuang, S.S.C., “The effect of oxygen concentration on the reduction of NO with propylene over CuO/γ-Al2O3”, Catal. Today, 62, 303-318 (2000). 17 Liu, Q.Y., Liu, Z.Y., Huang, Z.G., Xie, G.Y., “A honeycomb catalyst for simultaneous NO and SO2removal from flue gas:Preparation and evaluation”, Catal. Today, 93-95, 833-838 (2004). 18 Su, J.H., Liu, Q.Y., Liu, Z.Y., Huang, Z.G., “Honeycomb CuO/Al2O3 /cordierite catalyst for selective catalytic reduction of NO by NH3-effect of Al2O3 coating”, Ind. Eng. Chem. Res., 47, 4295-4301 (2008). 19 Sirdeshpande, A.R., Lighty, J.S., “Kinetics of the selective catalytic reduction of NO with NH3 over CuO/γ-Al2O3”, Ind. Eng. Chem. Res., 39, 1781-1787 (2000). 20 Tronconi, E., Forzatti, P., “Adequacy of lumped parameter models for SCR reactors with monolith structure”, AIChE J., 38, 201-210 (1992). 21 Bosch, H., Janssen, F.J.J.G., “Catalytic reduction of nitrogen oxides:A review on the fundamentals and technology”, Catal. Today, 2, 369-521 (1988). 22 Centeno, M.A., Carrizosa, I., Odriozola, J.A., “In situ DRIFTS study of the SCR reaction of NO with NH3 in the presence of O2 over lanthanide doped V2O5/Al2O3 catalysts”, Appl. Catal. B Environ., 19, 67-73 (1998). 23 Buzanowski, M.A., Yang, R.T., “Simple design of monolith reactor for selective catalytic reduction of NO for power plant emission control”, Ind. Eng Chem. Res., 29, 2074-2078 (1990). 24 Lei, Z., Liu, X., Jia, M., “Modeling of selective catalytic reduction (SCR) for NO removal using monolithic honeycomb catalyst”, Energ. Fuel., 23, 6146-6151 (2009). 25 Tronconi, E., Forzatti, P., Gomez Martin, J., Malloggi, S., “Selective catalytic removal of NOx :A mathematical model for design of catalyst and reactor”, Chem. Eng. Sci., 47, 2401-2406 (1992). 26 Liu, Q.Y., Liu, Z.Y., Li, C.Y., “Adsorption and activation of NH3 during selective catalytic reduction of NO by NH3”, Chinese J. Catal., 27, 636-646 (2006). (in Chinese) 27 Hsu, L.Y., Teng, H.S., “Catalytic NO reduction with NH3 over carbons modified by acid oxidation and by metal impregnation and its kinetic studies”, Appl. Catal. B Environ., 35, 21-30 (2001). 28 Shigapov, A.N., Graham, G.W., MaCabe, R.W., Peck, M.P., Plmmer, H.K. Jr., “The preparation of high surface area cordierite monolith by acid treatment”, Appl. Catal. A:Gen., 182, 137-146 (1999). 29 González-Velasco, J.R., Ferret, R., López-Fonseca, R., Gutiérrez-Ortiz, M.A., “Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction”, Powder Technol., 153, 34-42 (2005). 30 Marangozis, J., “Comparison and analysis of intrinsic kinetics and effectiveness factors for the catalytic reduction of NO with ammonia in the presence of oxygen”, Ind. Eng. Chem. Res., 31, 987-994 (1992). 31 Lefers, J.B., Lodder, P., Enoch, G.D., “Modeling of selective catalytic DeNOx reactors-strategy for replacing deactivated catalyst elements”, Chem. Eng. Technol., 14, 192-200 (1991). 32 Tronconi, E., “Interaction between chemical kinetics and transport phenomena in monolithic catalysts”, Catal. Today, 34, 421-427 (1997). |