1 Bechtel Corp., PIMS (Process Industry Modeling System) User's manual. Version 6.0, Bechtel Corp., Houston, TX (1993). 2 Macarthur, J.W., “RMPCT:A New Robust Approach to Multivariable Predictive Control for the Process Industries”, In:Proceedings of the 1996 Control Systems Conference, Halifax, Canada, 53-60 (1996). 3 Bonner & Moore Associates, Inc., RPMS (Refinery and Petrochemical Modeling System):A System Description, Bonner & Moore Associates, Inc., Houston, NY (1979). 4 Kelly, J.D., Mann, J.L., “Crude oil blend scheduling optimization:An application with multimillion dollar benefits (1) The ability to schedule the crude oil blend shop more effectively provides substantial downstream benefits”, Hydrocarbon Processing, 82 (6), 47-51 (2003). 5 Lee, H.M., Pinto, J.M., Grossmann, I.E., Park, S., “Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management”, Industrial & Engineering Chemistry Research, 35 (5), 1630-1641 (1996). 6 Jia, Z.Y., Ierapetritou, M., Kelly, J.D., “Refinery short-term scheduling using continuous time formulation:Crude-oil operations”, Industrial & Engineering Chemistry Research, 42 (13), 3085-3097 (2003). 7 Reddy, P., Karimi, I.A., Srinivasan, R., “Novel solution approach for optimizing crude oil operations”, AIChE Journal, 50 (6), 1177-1197 (2004). 8 Pan, M., Li, X.X., Qian, Y., “New approach for scheduling crude oil operations”, Chemical Engineering Science, 64 (5), 965-983 (2009). 9 Wang, J., Rong, G., “Robust optimization model for crude oil scheduling under uncertainty”, Industrial & Engineering Chemistry Research,49 (4), 1737-1748 (2010). 10 Zhao, X.Q., Rong, G., “Blending scheduling under uncertainty based on particle swarm optimization algorithm”, Chin. J. Chem. Eng., 13 (4), 535-541 (2005). 11 Luo, C.P., Rong, G., “A strategy for the integration of production planning and scheduling in refineries under uncertainty”, Chin. J. Chem. Eng., 17 (1), 113-127 (2009). 12 Mendez, C.A., Grossmann, I.E., Harjunkoski, I., Kabore, P., “A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations”, Computers & Chemical Engineering, 30 (4), 614-634 (2006). 13 Li, J., Karimi, I.A., Srinivasan, R., “Recipe determination and scheduling of gasoline blending operations”, AIChE Journal, 56 (2), 441-465 (2010). 14 Grossmann, I.E., “Review of nonlinear mixed-integer and disjunctive programming techniques”, Optimization and Engineering, 3 (3), 227-252 (2002). 15 Ling, W., Intelligent Optimization Algorithm and Its Application, Tsinghua University Press, Beijing, 230 (2001). 16 Glover, F., “Future paths for integer programming and links to artificial-intelligence”, Computers & Operations Research, 13 (5), 533-549 (1986). 17 Storn, R., Price, K., “Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optimization, 11 (4), 341-359 (1997). 18 Rajesh, J., Gupta, K., Kusumakar, H.S., Jayaraman, V.K., Kulkarni, B.D., “A tabu search based approach for solving a class of bilevel programming problems in chemical engineering”, Journal of Heuristics, 9 (4), 307-319 (2003). 19 Hu, C.P., Yan, X.F., “An immune self-adaptive differential evolution algorithm with application to estimate kinetic parameters for homogeneous mercury oxidation”, Chin. J. Chem. Eng., 17 (2), 232-240 (2009). 20 Wu, Y.L., Lu, J.G., Sun, Y.X., “An improved differential evolution for optimization of chemical process”, Chin. J. Chem. Eng., 16 (2), 228-234 (2008). 21 Coello, C., “Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:A survey of the state of the art”, Computer Methods in Applied Mechanics and Engineering, 191 (11-12), 1245-1287 (2002). 22 Deb, K., “An efficient constraint handling method for genetic algorithms”, Computer Methods in Applied Mechanics and Engineering, 186 (2-4), 311-338 (2000). 23 Lin, Y., Hwang, K., Wang, F., “A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems”, Computers & Mathematics with Applications, 47 (8-9), 1295-1307 (2004). 24 Nearchou, A.C., Omirou, S.L., “Differential evolution for sequencing and scheduling optimization”, Journal of Heuristics, 12 (6), 395-411 (2006). 25 Bean, J.C., “Genetic algorithms and random keys for sequencing and optimization”, ORSA Journal on Computing, 6 (2), 154-160 (1994). 26 Lampinen, J., Zelinka, I., “Mechanical engineering design optimization by differential evolution”, In:New Ideas in Optimization, Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V., eds., McGraw-Hill Ltd., UK, 127-146 (1999). |