[1] J.M. Pinto, M. Joly, L. Moro, Planning and scheduling models for refinery operations, Comput. Chem. Eng. 24 (9-10) (2000) 2259-2276.[2] M. Joly, L. Moro, J.M. Pinto, Planning and scheduling for petroleum refineries using mathematical programming, Braz. J. Chem. Eng. 19 (2) (2002) 207-228.[3] Z. Jia, M. Ierapetriton, J.D. Kelly, Refinery short-term scheduling using continuous time formulation: Crude-oil operations, Ind. Eng. Chem. Res. 42 (13) (2003) 3085-3097.[4] Z. Jia, M. Ierapetritou, Efficient short-term scheduling of refinery operations based on a continuous time formulation, Comput. Chem. Eng. 28 (6-7) (2004) 1001-1019.[5] C. Luo, G. Rong, Hierarchical approach for short-term scheduling in refineries, Ind. Eng. Chem. Res. 46 (11) (2007) 3656-3668.[6] S. Mouret, I.E. Grossmann, P. Pestiaux, A new Lagrangian decomposition approach applied to the integration of refinery planning and crude-oil scheduling, Comput. Chem. Eng. 35 (12) (2011) 2750-2766.[7] N.K. Shah, M. Ierapetritou, Short-term scheduling of a large-scale oil-refinery operations: incorporating logistics details, AIChE J. 57 (6) (2011) 1570-1584.[8] W. Lv, Y. Zhu, D. Huang, Y. Jiang, Y. Jin, A newstrategy of integrated control and on-line optimization on high-purity distillation process,Chin. J. Chem.Eng. 18 (1) (2010) 66-79.[9] L. Shi, Y. Jiang, L. Wang, D. Huang, Refinery production scheduling involving operational transitions ofmode switching under predictive control system, Ind. Eng. Chem. Res. 53 (19) (2014) 8155-8170.[10] S.-H.Wang, An improved step size of subgradient algorithmfor solving the Lagrangian relaxation problem, Comput. Chem. Eng. 29 (2003) 245-249.[11] S. Terrazas-Moreno, P.A. Trotter, I.E. Grossmann, Temporal and spatial Lagrangean decompositions in multi-site, multi-period production planning problems with sequence-dependent changeovers, Comput. Chem. Eng. 35 (2011) 2913-2928.[12] L. Tang, P.B. Luh, J. Liu, L. Fang, Steel-making process scheduling using Lagrangian relaxation, Int. J. Prod. Res. 40 (1) (2002) 55-70.[13] Z. Li, M. Ierapetritou, Production planning and scheduling integration through augmented Lagrangian optimization, Comput. Chem. Eng. 34 (2010) 996-1006.[14] Y. Jiang, M.A. Rodriguez, I. Harjunkoski, I.E. Grossmann, Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part II: A Lagrangean decomposition algorithm, Comput. Chem. Eng. 62 (2014) 211-224.[15] B.R. Knudsen, I.E. Grossmann, B. Foss, A.R. Conn, Lagrangian relaxation based decomposition forwell scheduling in shale-gas systems, Comput. Chem. Eng. 63 (2014) 234-249.[16] S.M. Neiro, J.M. Pinto, Langrangean decomposition applied to multiperiod planning of petroleumrefineries under uncertainty, Lat. Am. Appl. Res. 36 (4) (2006) 213-220.[17] B.M. Baker, J. Sheasby, Accelerating the convergence of subgradient optimization, Eur. J. Oper. Res. 117 (1999) 136-144.[18] F. Fumero, A modified subgradient algorithm for Lagrangean relaxation, Comput. Oper. Res. 28 (2001) 33-52.[19] P.B. Luh, M. Ni, H. Chen, L.S. Thakur, Price-based approach for activity coordination in a supply network, IEEE Trans. Robot. Autom. 19 (2) (2003) 335-346.[20] R. Buil, M.à. Piera, P.B. Luh, Improvement of Lagrangian relaxation convergence for production scheduling, IEEE Trans. Autom. Sci. Eng. 9 (1) (2012) 137-147. |