[1] S.J. Qin, Survey on data-driven industrial process monitoring and diagnosis, Annu. Rev. Control. 36 (2) (2012) 220-234.[2] J. Liang, J.X. Qian, Multivariate statistical processmonitoring and control: Recent developments and applications to chemical industry, Chin. J. Chem. Eng. 11 (2) (2003) 191-203.[3] Z.F. Wang, J.Q. Yuan, Online supervision of penicillin cultivations based on rolling MPCA, Chin. J. Chem. Eng. 15 (1) (2007) 92-96.[4] L.P. Zhao, C.H. Zhao, F.R. Gao, Phase transition analysis based quality prediction for multi-phase batch processes, Chin. J. Chem. Eng. 20 (6) (2012) 1191-1197.[5] H. Guo, H.G. Li, On-line batch process monitoring with improved multi-way independent component analysis, Chin. J. Chem. Eng. 21 (3) (2013) 263-270.[6] L.F. Cai, X.M. Tian, S. Chen, A process monitoring method based on noisy independent component analysis, Neurocomputing 127 (2014) 231-246.[7] J. Wang, Q.P. He, Multivariate statistical process monitoring based on Statistics Pattern Analysis, Ind. Eng. Chem. Res. 49 (17) (2010) 7858-7869.[8] Q.P. He, J. Wang, Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch processes, AICHE J. 57 (1) (2011) 107-121.[9] H.J. Galicia, Q.P. He, J. Wang, Statistics pattern analysis based fault detection and diagnosis, Proceedings of CPC VIII Conference, 2012.[10] H.Y. Zhang, X.M. Tian, X.G. Deng, Fault identificationmethod based on SPA similarity factor, CIESC J. 64 (12) (2013) 4503-4508 (in Chinese).[11] X. Xie, H.B. Shi, Multimode process monitoring based on fuzzy C-means in locality preserving projection subspaces, Chin. J. Chem. Eng. 20 (6) (2012) 1174-1179.[12] X.F. He, P. Niyogi, Locality preserving projections, NISP 16 (2003) 234-241.[13] K.L. Hu, J.Q. Yuan, Multivariate statistical process control based on multiway locality preserving projections, J. Process Control 18 (7) (2008) 797-807.[14] J.D. Shao, G. Rong, J.M. Lee, Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis, Chemom. Intell. Lab. Syst. 96 (1) (2009) 75-83.[15] X.G. Deng, X.M. Tian, Sparse kernel locality preserving projection and its application in nonlinear process fault detection, Chin. J. Chem. Eng. 21 (2) (2013) 163-170.[16] M.G. Zhang, Z.Q. Ge, Z.H. Song, R.W. Fu, Global-local structure analysis model and its application for fault detection and identification, Ind. Eng. Chem. Res. 50 (11) (2011) 6387-6848.[17] J.B. Yu, Local and global principal component analysis for process monitoring, J. Process Control 22 (7) (2012) 1358-1373.[18] X.G. Deng, X.M. Tian, S. Chen, Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis, Chemom. Intell. Lab. Syst. 127 (2013) 195-209.[19] J.A. Westerhuis, S.P. Gurden, A.K. Smilde, Generalized contribution plots inmultivariate statistical process monitoring, Chemom. Intell. Lab. Syst. 51 (1) (2000) 95-114.[20] C.F. Alcala, S.J. Qin, Unified analysis of diagnosis methods for process monitoring, Proceedings of the 7th IFAC Symposium on Fault Detection Supervision and Safety of Technical Processes. Barcelona, Spain 2009, pp. 1-3.[21] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring, Automatica 45 (7) (2009) 1593-1600.[22] R. Dunia, S.J. Qin, Subspace approach tomultidimensional fault identification and reconstruction, AICHE J. 44 (8) (1998) 1813-1831.[23] H.H. Yue, S.J. Qin, Reconstruction-based fault identification using a combined index, Ind. Eng. Chem. Res. 40 (20) (2001) 4403-4414.[24] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring with kernel principal component analysis, Ind. Eng. Chem. Res. 49 (17) (2010) 7849-7857.[25] X.G.Deng, X.M. Tian,A newfault isolationmethod based on unified contribution plots, Proceedings of the 30th Chinese Control Conference, Yantai 2011, pp. 4280-4285.[26] P. Nomikos, J.F. Macgregor, Multivariate SPC charts for monitoring batch processes, Technometrics 37 (1) (1995) 41-59.[27] S.J. Qin, Statistical process monitoring: Basics and beyond, J. Chemom. 17 (8) (2003) 480-502.[28] E.B. Martin, A.J.Morris, Non-parametric confidence bounds for process performance monitoring charts, J. Process Control 6 (6) (1996) 349-358.[29] Z.Q. Ge, L. Xie, U. Kruger, L. Lamont, Z.H. Song, S.Q.Wang, Sensor fault identification and isolation for multivariate non-Gaussian processes, J. Process Control 19 (10) (2009) 1707-1715.[30] B. Daaou, A. Mansouri, M. Bouhamida, M. Chenafa, Development of linearizing feedback control with a variable structure observer for continuous stirred tank reactors, Chin. J. Chem. Eng. 20 (3) (2012) 567-571. |