[1] J. Liang, J. Qian, Multivariate statistical process monitoring and control: Recent developments and applications to chemical industry, Chin. J. Chem. Eng. 11 (2) (2003) 191-203.[2] L. Wang, H. Shi, Improved kernel PLS-based fault detection approach for nonlinear chemical processes, Chin. J. Chem. Eng. 22 (6) (2014) 657-663.[3] W. Dong, Y. Yao, F. Gao, Phase analysis and identification method for multiphase batch processes with partitioning multi-way principal component analysis (MPCA) Model, Chin. J. Chem. Eng. 20 (6) (2012) 1121-1127.[4] S. Bezergianni, A. Kalogianni, Application of principal component analysis for monitoring and disturbance detection of a hydrotreating process, Ind. Eng. Chem. Res. 47 (18) (2008) 6972-6982.[5] P.V.D. Kerkhof, J. Vanlaer, G. Gins, J.F. Van Impe, Analysis of smearing-out in contribution plot based fault isolation for Statistical Process Control, Chem. Eng. Sci. 104 (2013) (2013) 285-293.[6] H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67 (2) (2005) 301-320.[7] L. Xie, X. Lin, J. Zeng, Shrinking principal component analysis for enhanced process monitoring and fault isolation, Ind. Eng. Chem. Res. 52 (49) (2013) 17475-17486.[8] S.J. Qin, S. Valle, M.J. Piovoso, On unifying multiblock analysis with application to decentralized process monitoring, J. Chemom. 15 (9) (2001) 715-742.[9] J.J. Hong, J. Zhang, J. Morris, Progressive multi-block modelling for enhanced fault isolation in batch processes, J. Process Control 24 (1) (2014) 13-26.[10] C. Tong, Y. Song, X. Yan, Distributed statistical process monitoring based on foursubspace construction and Bayesian inference, Ind. Eng. Chem. Res. 52 (29) (2013) 9897-9907.[11] B.Wang, Q. Jiang, X. Yan, Fault detection and identification using a Kullback-Leibler divergence based multi-block principal component analysis and Bayesian inference, Korean J. Chem. Eng. (2014) 1-14.[12] Z. Lv, Q. Jiang, X. Yan, Batch process monitoring based on multisubspace multiway principal component analysis and time-series Bayesian inference, Ind. Eng. Chem. Res. 53 (15) (2014) 6457-6466.[13] C.-c. Huang, T. Chen, Y. Yao, Mixture discriminant monitoring: A hybrid method for statistical process monitoring and fault diagnosis/isolation, Ind. Eng. Chem. Res. 52 (31) (2013) 10720-10731.[14] D.S. Lee, J.M. Park, P.A. Vanrolleghem, Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor, J. Biotechnol. 116 (2) (2005) 195-210.[15] C. Zhao, Y. Sun, Comprehensive subspace decomposition and isolation of principal reconstruction directions for online fault diagnosis, J. Process Control 23 (10) (2013) 1515-1527.[16] P. Sedgwick, Pearson's correlation coefficient, BMJ 345 (2012).[17] N.D. Tracy, J.C. Young, R.L. Mason, Multivariate control charts for individual observations, J. Qual. Technol. 24 (2) (1992) 88-95.[18] P. Nomikos, J.F. Macgregor, Multivariate SPC charts for monitoring batch processes, Technometrics 37 (1) (1995) 41-59.[19] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring, Automatica 45 (7) (2009) 1593-1600.[20] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17 (245) (1993).[21] P.R. Lyman, C. Georgakis, Plant-wide control of the Tennessee Eastman problem, Comput. Chem. Eng. 19 (3) (1995) 321-331. |