[1] Z.Q. Ge, Z.H. Song, F.R. Gao, Review of recent research on data-based process monitoring, Ind. Eng. Chem. Res. 52 (2013) 3543-3562.
[2] U. Kruger, G. Dimitriadis, Diagnosis of process faults in chemical systems using a local partial least squares approach, AIChE J. 54 (2008) 2581-2596.
[3] J.M. Lee, C.K. Yoo, S.W. Choi, P.A. Vanrolleghem, I.B. Lee, Nonlinear process monitoring using kernel principal component analysis, Chem. Eng. Sci. 59 (2004) 223-234.
[4] Z.Q. Ge, Z.H. Song, Mixture Bayesian regularization method of PPCA for multimode process monitoring, AIChE J. 56 (2010) 2838-2849.
[5] S.J. Zhao, J. Zhang, Y.M. Xu, Performance monitoring of processes with multiple operating modes through multiple PLS models, J. Process Control 16 (2006) 763-772.
[6] B. Song, H.B. Shi, Y.X. Ma, J.P. Wang, Multisubspace principal component analysis with local outlierfactor for multimode process monitoring, Ind. Eng. Chem. Res. 53 (2014) 16453-16464.
[7] H.D. Jin, Y.H. Lee, G. Lee, C.H. Han, Robust recursive principal component analysis modeling for adaptive monitoring, Ind. Eng. Chem. Res. 45 (2006) 696-703.
[8] W.F. Ku, R.H. Storer, C. Georgakis, Disturbance detection and isolation by dynamic principal component analysis, Chemom. Intell. Lab. Syst. 30 (1995) 179-196.
[9] D.S. Kim, I.B. Lee, Process monitoring based on probabilistic PCA, Chemom. Intell. Lab. Syst. 67 (2003) 109-123.
[10] S.J. Qin, R. Dunia, Determining the number of principal components for best reconstruction, J. Process Control 10 (2000) 245-250.
[11] M. Tamura, S. Tsujita, A study on the number of principal components and sensitivity of fault detection using PCA, Comput. Chem. Eng. 31 (2007) 1035-1046.
[12] I.T. Jolliffe, A note on the use of principal components in regression, Appl. Stat. (1982) 300-303.
[13] T. Togkalidou, R.D. Braatz, B.K. Johnson, O. Davidson, A. Andrews, Experimental design and inferential modeling in pharmaceutical crystallization, AIChE J. 47 (2001) 160-168.
[14] Q.C. Jiang, X.F. Yan, W.X. Zhao, Fault detection and diagnosis in chemical processes using sensitive principal component analysis, Ind. Eng. Chem. Res. 52 (2013) 1635-1644.
[15] Q. Chen, U. Kruger, M. Meronk, A. Leung, Synthesis of T2 and Q statistics for process monitoring, Control. Eng. Pract. 12 (2004) 745-755.
[16] Z.Q. Ge, F.R. Gao, Z.H. Song, Two-dimensional Bayesian monitoring method for nonlinear multimode processes, Chem. Eng. Sci. 66 (2011) 5173-5183.
[17] X. Xie, H.B. Shi, Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models, Ind. Eng. Chem. Res. 51 (2012) 5497-5505.
[18] T.J. Rato, M.S. Reis, Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR), Chemom. Intell. Lab. Syst. 125 (2013) 101-108.
[19] N.L. Ricker, Optimal steady-state operation of the Tennessee Eastman challenge process, Comput. Chem. Eng. 19 (1995) 949-959.
[20] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17 (1993) 245-255.
[21] J.M. Lee, C. Yoo, I.B. Lee, Statistical monitoring of dynamic processes based on dynamic independent component analysis, Chem. Eng. Sci. 59 (2004) 2995-3006. |