1 Song, Y., Mason, E.A., “Statistical-mechanical theory of a new analytical equation of state”, J. Chem. Phys., 91, 7840-7853(1989). 2 Song, Y., Mason, E.A., “Analytical equation of state for molecular fluids: Kihara model for rodlike molecules”, Phys. Rev. A, 42, 4743-4748(1990). 3 Song, Y., Mason, E.A. “Statistical-mechanical basis for accurate analytical equations of state for fluids”, Fluid Phase Equilibria, 75, 105-115(1992). 4 Ihm, G., Song, Y., Mason, E.A., “A new strong principle of corresponding states for nonpolar fluids”, J. Chem. Phys., 94, 3839-3848(1991). 5 Ihm, G., Song, Y., Mason, E.A., “Strong principle of corresponding states: Reduction of a p-v-T surface to a line”, Fluid Phase Equilibria, 75, 117-125(1992). 6 Tao, F.M., Mason, E.A., “Statistical-mechanical equation of state for nonpolar fluids: prediction of phase boundaries”, J. Chem. Phys., 100, 9075-9084(1994). 7 Yousefi, F., Moghadasi, J., Papari, M.M., Campo, A., “Extension of Tao-Mason equation of state to mixtures: results for PVTx properties of refrigerants fluid mixtures”, Ind. Eng. Chem. Res., 48, 5079-5084(2009). 8 Estela-Uribe, J.F., De Mendoza, A., Trusler, J.P.M., “Extended corresponding states model for fluids and fluid mixtures, II. Application to mixtures and natural gas systems”, Fluid Phase Equilibria, 216, 59-84(2004). 9 Moghadasi, J., Papari, M.M., Yousefi, F., Haghighi, B., “Transport coefficients of natural gases”, J. Chem. Eng. Japan, 40, 698-706(2007). 10 Neubauer, B., Tavitian, B., Boutin, A., Ungerer, P., “Molecular simulations on volumetric properties of natural gas”, Fluid Phase Equilibria, 161, 45-62(1999). 11 Magee, J.W., Haynes, W.M., Hiza, M.J., “Isochoric(p, ρ, T) measurements for five natural gas mixtures from Ts(225 to 350) K at pressures to 35 MPa”, J. Chem. Thermodynamics, 29, 1439-1454(1997). 12 Elsharkawy, A.M., “Predicting volumetric and transport properties of sour gases and gas condensates using EOSs, corresponding state models, and empirical correlations”, Petroleum Science and Technology, 21, 1759-1787(2003). 13 Lagache, M.H., Ungerer, Ph., Boutin, A., “Prediction of thermodynamic derivative properties of natural condensate gases at high pressure by Monte Carlo simulation”, Fluid Phase Equilibria, 220,211-223(2004). 14 Bahadori, B., Mokhatab, S., Towler, B., “Rapidly estimating natural gas compressibility factor”, J. Natural Gas Chem., 16, 349-353(2007). 15 Elsharkawy, A.M., kamel, A., “The accuracy of predictiig compressibility factor for sour natural gases”, Petroleum Science and Technology, 19, 711-731(2001). 16 Blswas, S.N., Bomlnaar, S.R.C., Schouten, J.A., Michels, J.J., ten Seldam, C.A.T., “Compressibility isotherms of simulated natural gases”, J. Chem. Eng. Data., 35, 35-38(1990). 17 Eubank, P.T., Scheloske, J.J., Hall, K.R., Holste, J.C., “Densities and mixture virial coefficients for wet natural gas mixtures”, J. Chem. Eng. Data, 32, 230-233(1987). 18 Staby, A., Mollerup, J.M., “Measurement of the volumetric properties of a nitrogen-methane-ethane mixture at 275, 310, and 345 K at pressures to 60 MPa”, J. Chem. Eng. Data , 36, 89-91(1991). 19 Haynes, W.M., “Measurements of orthobaric-liquid densities of multicomponent mixtures of LNG components between 110 and 130 K”, J. Chem. Thermodynamics, 14, 603-612(1982). 20 Hiza, M.J., Haynes, W.M., Parrish, W.R., “Orthobaric liquid densities and excess volumes for binary mixtures of low molarmass alkanes and nitrogen between 105 and 140 K”, J. Chem. T hermodynamics, 9, 873-896(1977). 21 Eslami, H., “Prediction of the density for natural gas and liquified natural gas mixtures”, AIChE J., 47, 2585-2592(2001). 22 Peng, D.Y., Robinson, D.B., “A new two-constant equation of state”, Ind. Eng. Chem. Fundam., 15, 59-64(1976). 23 Levelt Sengers, J.M.H., Deiters, U.K., Klask, U., Swidersky, P., Schneider, G.M., “Application of the Taylor dispersion method in supercritical fluid”, Int. J. Thermophys., 14, 893-922(1993). 24 Sandler, S.I., Chemical and Engineering Thermophysics, Wiley, New York(1989). 25 Prauznitz, J.M., Lichtentaler, R.N., Azevedo, E.G., Molecular Thermodynamics of Fluid Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ(1999). 26 Tao, F.M., Mason, E.A., “Equation of state for mixtures of nonpolar fluids: Prediction from experimental constants of the components”, Int. J. Thermophys., 13, 1053-1060(1992). 27 Pitzer, K.S., Curl, R.F., “The volumetric and thermodynamic properties of fluids. III. Empirical equation for the second virial coefficient”, J. Am. Chem. Soc., 79, 2369-2370(1957). 28 Tsonopolous, C., “An empirical correlation of second virial coefficients”, AIChE J., 20, 263-272(1974). 29 Tsonopolous, C., “2nd virialcoefficient of polar haloalkanes”, AIChE J., 21, 827-829(1975). 30 Tsonopolous, C., “Second virial coefficient of water pollution”, AIChE J., 24, 1112-1115(1978). 31 Papari, M.M., Razavizadeh, A., Mokhberi, F., Boushehri., A “equation of state and P-V-T-x properties of refrigerant mixtures based on speed of sound data”, Ind. Eng. Chem. Res., 42, 3802-3808(2003). 32 Ihm, G., Song, Y., Mason, E.A., “Equation of state for mixtures of nonpolar molecular fluids”, Mol. Phys., 75, 897-915(1992). 33 Sheikh, S., Papari, M.M., Boushehri, A., “Equation of state and pressure-volume-temperature properties of refrigerants based on speed of sound data”, Ind. Eng. Chem. Res., 41, 3274-3281(2002). |