1 Rayleigh, L., “On convection currents in a horizontal layer of fluid when the higher temperature is on the under side”, Phil. Mag., 32, 529-546 (1916). 2 Grahn, A., “Two-dimensional numerical simulations of MarangoniBénard instabilities during liquid-liquid mass transfer in a vertical gap”, Chem. Eng. Sci., 61, 3586-3592 (2006). 3 Sun, Z.F., Yu, K.T., Wang, S.Y., Miao, Y.Z., “Absorption and desorption of carbon dioxide into and from organic solvents:effect of Rayleigh and Marangoni instability”, Ind. Eng. Chem. Res., 41 (7), 1905-1913 (2002). 4 Arend, B., Dittmar, D., Eggers, R., “Interaction of interfacial convection and mass transfer effects in the system CO2-water”, Int. J. Heat Mass Transfer, 47, 3649-3657 (2004). 5 Kim, M.C., Yoon, D.Y., Choi, C.K., “Onset of buoyancy-driven instability in gas diffusion systems”, Ind. Eng. Chem. Res., 45, 7321-7328 (2006). 6 Sun, Z.F., Fahmy, M., “Onset of Rayleigh-Bénard-Marangoni convection in gas-liquid mass transfer with two-phase flow:theory”, Ind. Eng. Chem. Res., 45, 6325-6329 (2006). 7 Kutepov, A.M., Pokusaev, B.G., Kazenin, D.A., Karlov, S.P., Vyaz’min, A.V., “Interfacial mass transfer in the liquid-gas system:an optical study”, Theor. Found. Chem. Eng., 35 (3), 213-216 (2001). 8 Okhotsimskiis, A., Hozawa, M., “Schlieren visualization of natural convection in binary gas-liquid systems”, Chem. Eng. Sci., 53 (14), 2547-2573 (1998). 9 Chen, W., “Experimental measurement of gas-liquid interfacial Rayleigh-Bénard-Marangoni convection and mass transfer”, Ph. D. Thesis, Tianjin Univ., China (2010). (in Chinese) 10 Sha, Y., Chen, H.L., Yin, Y.W., Tu, S., Ye, L.Y., Zheng, Y.M., “Characteristics of the Marangoni convection induced in initial quiescent water”, Ind. Eng. Chem. Res., 49, 8770-8777 (2010). 11 Mussa, M.A., Abdullah, S., Nor Azwadi, C.S., Muhamad, N., “Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method”, Computers Fluids, 44, 162-168 (2011). 12 Mohamad, A.A., El-Ganaoui, M., Bennacer, R., “Lattice Boltzmann simulation of natural convection in an open ended cavity”, Int. J. Therm. Sci., 48 (10), 1870-1875 (2009). 13 Ma, C.F., “Lattice BGK simulations of double diffusive natural convection in a rectangular enclosure in the presences of magnetic field and heat source”, Nonlinear Anal. Real World Appl., 10, 2666-2678 (2009). 14 Verhaeghe, F., Blanpain, B., Wollants, P., “Lattice Boltzmann method for double-diffusive natural convection”, Phys. Rev. E, 75 (4), 046705 (2007). 15 Lishchuk, S.V., Halliday, I., Care, C.M., “Multicomponent lattice Boltzmann method for fluids with a density contrast”, Phys. Rev. E, 77 (3), 036702 (2008). 16 He, X.Y., Chen, S.Y., Zhang, R.Y., “A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability”, J. Comput. Phys., 152, 642-663 (1999). 17 Aaltosalmi, U., “Fluid flow in porous media with the lattice-Boltzmann method”, Ph D Thesis, University of Jyv skyl,Finland (2005). 18 Chen, S., “A large-eddy-based lattice Boltzmann model for turbulent flow simulation”, Appl. Math. Comput., 215, 591-598 (2009). 19 Chen, S.Y., Doolen, G.D., “Lattice Boltzmann method for fluid flows”, Annu. Rev. Fluid Mech., 30, 329-364 (1998). 20 Inamuro, T., Yoshino, M., Inoue, H., Mizuno, R., Ogino, F., “A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem”, J. Comput. Phys., 179, 201-215 (2002). 21 Qian, Y.H., D'Humieres, D., Lallemand, P., “Lattice BGK models for Navier-Stokes equation”, Europhys. Lett., 17 (6), 479-484 (1992). 22 Bhatnagar, P.L., Gross, E.P., Krook, M., “A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems”, Phys. Rev., 94 (3), 511-525 (1954). 23 Shan, X.W., “Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method”, Phys. Rev. E, 55 (3), 2780-2788 (1997). 24 Buick, J.M., Greated, C.A., “Gravity in a lattice Boltzmann model”, Physical Review E., 61 (5), 5307-5320 (2000). 25 Sukop, M.C., Thorne, D.T. Jr., Lattice Boltzmann Modeling:An Introduction for Geoscientists and Engineers, Springer, Heidelberg, Netherlands, 1-171 (2006). 26 Shi, Y., Zhao, T.S., Guo, Z.L., “Finite difference-based lattice Boltzmann simulation of natural convection heat transfer in a horizontal concentric annulus”, Computers Fluids, 35, 1-15 (2006). 27 Tan, K.K., Thorpe, R.B., “The onset of convection induced by buoyancy during gas diffusion in deep fluids”, Chem. Eng. Sci., 54, 4179-4187 (1999). 28 Treybal, R.E., Mass Transfer Operations, McGraw-Hill Book Company, New York, 25-26 (1955). 29 Takahashi, M., Kobayashi, Y., “Diffusion coefficients and solubilities of carbon dioxide in binary mixed solvents”, J. Chem. Eng. Data, 27, 328-331 (1982). 30 Phillips, T.W., Murphy, K.P., “Liquid viscosity of halocarbons”, J. Chem. Eng. Data, 15 (2), 304-307 (1970). 31 Ma, Y.G., Yu, G.C., Li, H.Z., “Note on the mechanism of interfacial mass transfer of absorption processes”, Int. J. Heat Mass Transfer, 48, 3454-3460 (2005). 32 Cussler, E.L., Diffusion:Mass Transfer in Fluid Systems, 3rd ed., Cambridge University Press, New York, 26-30 (2009). |