1 Brandl, H., Bosshard R., Wegmann M., "Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi", Hydrometallurgy, 59, 319-326 (2001). 2 Environment Victoria, "Environmental report card on computers 2005: computer waste in Australia and the case for producer responsibility", Environment Victoria (2005), p. 17. http://www.envict.org.au/file/EWaste_blue_report_card.pdf, accessed 9 July (2006). 3 Menad, N., Bjorkman, B., Allain, E.G., "Combustion of plastics contained in electric and electronic scrap", Resources Conserv. Recycl., 24, 65-85 (1998). 4 Valix, M., Usai, F., Malik, R., "Fungal bio-leaching of low grade laterite ores", Minerals Eng., 14 (2), 197-203 (2001). 5 Bosecker, K.,"Bioleaching: metal solubilization by microorganisms", FEMS Microbiol. Rev., 20 (3/4), 591-604 (1997). 6 Le, L., Tang, J., Ryan, D., Valix, M., "Bioleaching nickel laterite ores using multi-metal tolerant Aspergillus foetidus organism", Minerals Eng., 19 (12), 1259-1265 (2006). 7 Ilyas, S., Anwar, M.A., Niazi, S.B., Afzal Ghauri, M., "Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria", Hydrometallurgy, 88 (1-4), 180-188 (2007). 8 Jain, N., Sharma, D.K., "Biohydrometallurgy for nonsulfidic minerals-A review", Geomicrobiol. J., 21 (3), 135-144 (2004). 9 Watling, H.R., "The bioleaching of sulphide minerals with emphasis on copper sulphides-A review", Hydrometallurgy, 84 (1/2), 81-108 (2006). 10 Valix, M., Usai, F., Malik, R., "The electro-sorption properties of nickel on laterite gangue leached with an organic chelating acid", Minerals Engineering, 14, 205-215 (2001). 11 Brown, B.,"Bioleaching of e-waste", Master Thesis, University of Sydney, Sydney (2009). 12 Welch, S.A., Barker, W.W., Banfield, J.F., "Microbial extracellular polysaccharides and plagioclase dissolution", Geochim. Cosmochim. Acta, 63 (9), 1405-1419 (1999). 13 Gadd, G.M., "Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes", Advances in Microbial Physiology, Poole, P.K., ed., Academic Press, 47-92 (1999). 14 Khachatourians, G.G., Arora, D.K., "Applied mycology and biotechnology for agriculture and foods", Applied Mycology and Biotechnology, George, G.K., Dilip, K.A., eds., Elsevier, 1-11 (2001). 15 Schippers, A., Sand, W., "Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur", Appl. Environ. Microbiol., 65 (1), 319-321 (1999). 16 Casas, J.M., Alvarez, F., Cifuentes, L., "Aqueous speciation of sulfuric acid-cupric sulfate solutions", Chem. Eng. Sci., 55 (24), 6223-6234 (2000). 17 Weast, R.C., Astle, M.J., Beyer, W.H., CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, Floria, B-219 (1984). 18 Santos, A., Yustos, P., Quintanilla, A., Ruiz, G., Garcia-Ochoa, F., "Study of the copper leaching in the wet oxidation of phenol with CuO-based catalysts: Causes and effects", Appl. Catal. B Envir., 61 (3/4), 323-333 (2005). 19 Palmer, D.A., Benezeth, P., Simonson, J.M., "Solubility of copper oxides around the water/steam cycle", Power Plant Chem., 6 (2), 81-88 (2004). |