1 Sasaki, K., Watanabe, M., Tanaka, T., Tanaka, T., “Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid”, Appl. Microbiol. Biotechnol., 58 (1), 23-29 (2002).2 Kennedy, J.C., Pottier, R.H., Pross, D.C., “Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience”, J. Photoch. Photobio. B., 6, 143-148 (1990).3 Sasikala, C.H., Ramana, V., Raghuveer, R.P., “5-Aminolevulinic acid: a potential herbicide/insecticide from micro-organism”, Biotechnol. Progr., 10 (5), 451-459 (1994).4 Watanabe, K., Tanaka, T., Hotta, Y., Kuramochi, H., Takeuchi, Y., “Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid”, Plant Growth Regul., 32 (1), 99-103 (2000).5 Chen, H.M., Chen, C.T., Yang, H., Kuo, M., Kuo, Y.S., Lan, W.H., “Successful treatment of oral verrucous hyperplasia with topical 5-aminolevulinic acid-mediated photodynamic therapy”, Oral Oncol., 40 (6), 630-637 (2004).6 Zhang, Z.J., Li, H.Z., Zhou, W.J., Takeuchi, Y., Yoneyama, K., “Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubes in vitro”, Plant Growth Regul., 49 (1), 27-34 ( 2006).7 Xie, L., Hall, D., Eiteman, M.A., Altman, E., “Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design”, Appl. Microbiol. Biotechnol., 63 (3), 267-273 (2003).8 Chung, S.Y., Seo, K.H., Rhee, J.I., “Influence of culture conditions on the production of extra-cellular 5-aminolevulinic acid (ALA) by recombinant E-coli”, Process Biochem., 40 (1), 385-394 (2005).9 Lee, D.H., Jun, W.J., Shin, D.H., Cho, H.Y., Hong, B.S., “Effect of culture conditions on production of 5-aminolevulinic acid by recombinant Escherichia coli”, Biosci. Biotech. Bioch., 69 (3), 470-476 (2005).10 Qin, G., Lin, J.P., Liu, X.X., Cen, P.L., “Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli”, J. Biosci. Bioeng., 102 (4), 316-322 (2006).11 Lin, J.P., Fu, W.Q., Cen, P.L., “Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production”, Bioresource Technol., 100 (7), 2293-2297 (2009).12 Sasaki, K., Watanabe, K., Tanaka, T., Hotta, Y., Nagai, S., “5-Aminolevulinic acid production by Chlorella SP during heterotrophic cultivation in the dark”, World J. Microb. Biot., 11 (3), 361-362 (1995).13 Ano, A., Funahashi, H., Nakao, K., Nishizawa, Y., “Effect of glycine on 5-aminolevulinic acid biosynthesis in heterotrophic culture of Chlorella regularis YA-603”, J. Biosci. Bioeng., 88 (1), 57-60 (1999).14 Noparatnaraporn, N., Watanabe, M., Sasaki, K., “Extracellular formation of 5-aminolevulinic acid by intact cells of the marine photosynthetic bacterium Rhodovulum sp under various pH conditions”, World J. Microb. Biot., 16 (3), 313-315 (2000).15 Kamiyama, H., Hotta, Y., Tanaka, T., Nishikawa, S., Sasaki, K., “Production of 5-aminolevulinic acid by a mutant strain of a photosynthetic bacterium”, Seibutsu-Kogaku Kais., 78 (2), 48-55 (2000).16 Nishikawa, S., Tanaka, T., Kaminaga, T., Miyachi, N., Watanabe, K., Hotta, Y., “Microorganisms producing 5-aminolevulinic acid and processing for producing 5-aminolevulinic acid by using the same”, U.S. Pat., 6342377 (2002).17 De, Leon.A., Hernandez, V., Galindo, E., Ramirez, O.T., “Effects of dissolved oxygen tension on the production of recombinant penicillin acylase in Escherichia coli”, Enzyme Microb. Tech., 33 (5), 689-697 (2003).18 Vemuri, G.N., Eiteman, M.A., Altman, E., “Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions”, J. Ind. Microbiol. Biot., 28 (6), 325-332 (2002).19 Liu, X.X., Lin, J.P., Qin, G., Cen, P.L., “Expression of a new gene from Agrobacterium radiobacter in Escherichia coli for 5-aminolevulinic acid production”, Chin. J. Chem. Eng., 13 (4), 522-528 (2005)20 Fu, W.Q., Lin, J.P., Cen, P.L., “Enhancement of 5-aminolevulinate production with recombinant Escherichia coli using batch and fed-batch culture system”, Bioresource Technol., 99 (11), 4864-4870 (2008).21 Burnham, B.F., “σ-Aminolevulinic acid synthase (from Rhodopseudomona spheroides)”, Method Enzymol., 17, 195-200 (1970).22 Fan, L., Lin, J.P., Liu, X.X., Qin, G., Cen, P.L., “Determination of 5-aminolevulinic acid in E. coli fermentation broth by reversed phase high performance liquid chromatography with precolumn derivatization”, Chin. J. Anal. Chem., 34 (7), 937-940 (2006).23 Fu, W.Q., Lin, J.P., Cen, P.L., “5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain”, Appl. Microbiol. Biotechnol., 75 (4), 777-782 (2007).24 Hellmuth, K., Korz, D.J., Sanders, E.A., Deckwer, W.D., “Effect of growth-rate on stability and gene-expression of recombinant plasmids during continuous and high cell-density cultivation of Escherichia coli TG1”, J. Biotechnol., 32 (3), 289-298 (1994).25 Lee, D.H., Jun, W.J., Kim, K.M., Shin, D.H., Cho, H.Y., Hong, B.S., “Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using D-glucose”, Enzyme Microb. Tech., 32 (1), 27-34 (2003). |