[1] L. Ljung, Perspectives on system identification, Annu. Rev. Control. 34 (1) (2010) 1-12.[2] T. Liu, F.R. Gao, Industrial process identification and control design: Step-test and relay-experiment-based methods, Springer, London, UK, 2012.[3] T. Liu, Q.G. Wang, H.P. Huang, A tutorial review on process identification from step or relay feedback test, J. Process Control 23 (10) (2013) 1597-1623.[4] J.P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica 39 (10) (2003) 1667-1694.[5] B. Zhou, Z.Y. Li, W.X. Zheng, G.R. Duan, Stabilization of some linear systems with both state and input delays, Syst. Control Lett. 61 (10) (2012) 989-998.[6] O. Xu, Y. Fu, H. Su, L. Li, A selectivemoving windowpartial least squares method and its application in process modeling, Chin. J. Chem. Eng. 22 (5) (2014) 799-804.[7] H. Wang, T. Liu, Recursive state-space model identification of non-uniformly sampled systems using singular value decomposition, Chin. J. Chem. Eng. 22 (12) (2014) 1268-1273.[8] Y.Y. Du, J.S.H. Tsai, H. Patil, L.S. Shieh, Y. Chen, Indirect identification of continuoustime delay systems from step responses, Appl. Math. Model. 35 (2) (2011) 594-611.[9] T. Liu, F.R. Gao, A generalized relay identification method for time delay and nonminimum phase processes, Automatica 45 (4) (2009) 1072-1079.[10] O. Gomez, Y. Orlov, I.V. Kolmanovsky, Online identification of SISO linear timeinvariant delay systems from output measurements, Automatica 43 (12) (2007) 2060-2069.[11] P.J. Gawthrop, M.T. Nihtila, A.B. Rad, Recursive parameter estimation of continuous systems with unknown time delay, Control Theory Adv. Technol. 5 (3) (1980) 227-248.[12] A.B. Rad, W.L. Lo, K.M. Tsang, Simultaneous on line identification of rational dynamics and time delay: A correlation based approach, IEEE Trans. Control Syst. Technol. 11 (6) (2003) 957-959.[13] X.M. Ren, A.B. Rad, P.T. Chan, W.L. Lo, Online identification of continuous-time systems with unknown time delay, IEEE Trans. Autom. Control 50 (9) (2005) 1418-1422.[14] J. Na, X.M. Ren, Y.Q. Xia, Adaptive parameter identification of linear SISO systems with unknown time-delay, Syst. Control Lett. 66 (2014) 43-50.[15] G. Ferretti, C.Maffezzoni, R. Scattolini, Recursive estimation of time delay in sampled systems, Automatica 27 (4) (1991) 653-661.[16] A. Elnaggar, G.A. Dumont, A.L. Elshafei, New method for delay estimation, Proceedings of the 29th IEEE conference on decision and control, 3 1990, pp. 1929-1930.[17] S. Bedoui, M. Ltaief, K. Abderrahim, Online identification of multivariable discrete time delay systems using a recursive least square algorithm, Math. Probl. Eng. (2013) 1-18.[18] S. Bedoui, M. Ltaief, K. Abderrahim, A new generalized vector observation for discrete-time delay systems identification, European control conference 2013, pp. 1922-1927.[19] S. Bedoui, M. Ltaief, K. Abderrahim, New results on discrete-time delay systems identification, Int. J. Autom. Comput. 9 (6) (2012) 570-577.[20] T. Söderström, P. Stoica, System identification, Prentice Hall, New York, USA, 1989.[21] L. Ljung, System identification: Theory for the user, Second ed. Prentice-Hall, Englewood Cliffs, New Jersey, 1999.[22] T. Söderström, P. Stoica, Instrumental variable methods for system identification, Circ. Syst. Signal Process. 21 (1) (2002) 1-9.[23] T. Söderström, P. Stoica, Comparison of some instrumental variable methods-Consistency and accuracy aspects, Automatic 17 (1) (1981) 101-115.[24] F. Ding, T.W. Chen, Parameter estimation for dual-rate systems with finite measurement date, dynamics of continuous, Discret. Impulsive Syst. Ser. B Appl. Algorithm 11 (1) (2004) 101-121.[25] D.S. Bernstein, Matrix mathematics: Theory, facts and formulas, Princeton University Press, 2009. |