[1] K.S. Pitzer, Activity Coefficients in Electrolyte Solutions, second ed. CRC Press, Boca Raton, FL, 1991. [2] C.C. Chen, L.B. Evans, A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AIChE J. 32(1986) 444-454. [3] A. Haghtalab, J.H. Vera, A nonrandom factor model for the excess Gibbs energy of electrolyte solutions, AIChE J. 34(1988) 803-813. [4] A. Haghtalab, S.H. Mazloumi, A nonelectrolyte local composition model and its application in the correlation of themean activity coefficient of aqueous electrolyte solutions, Fluid Phase Equilib. 275(2009) 70-77. [5] A. Haghtalab, M. Dehghani tafti, Electrolyte UNIQUAC-NRF model to study the solubility of acid gases in alkanolamines, Ind. Eng. Chem. Res. 46(2007) 6053-6060. [6] A. Haghtalab, A. Shojaeian, Modeling solubility of acid gases in alkanolamines using the nonelectrolyteWilson-nonrandom factor model, Fluid Phase Equilib. 289(2010) 6-14. [7] A. Haghtalab, K. Peyvandi, Generalized Electrolyte-UNIQUAC-NRF model for calculation of solubility and vapor pressure of multicomponent electrolytes solutions, J. Mol. Liq. 165(2012) 101-112. [8] M.R. Dehghani, H. Modarress, M. Monirfar, Measurement andmodelling of mean activity coefficients of aqueous mixed electrolyte solution containing glycine, J. Chem. Thermodyn. 38(2006) 1049-1053. [9] A. Haghtalab, A. Shojaeian, S.H. Mazloumi, Nonelectrolyte NRTL-NRF model to study thermodynamics of strong and weak electrolyte solutions, J. Chem. Thermodyn. 43(2011) 354-363. [10] S. Kumar Dash, A.N. Samanta, S.S. Bandyopadhyay, (Vapour+liquid) equilibria (VLE) of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol:New data and modelling using eNRTL-equation, J. Chem. Thermodyn. 4(2011) 1278-1285. [11] P.W.J. Derks, J.A. Hogendoorn, G.F. Versteeg, Experimental and theoretical study of the solubility of carbon dioxide in aqueous blends of piperazine and Nmethyldiethanolamine, J. Chem. Thermodyn. 42(2010) 151-163. [12] A.T. Zoghi, F. Feyzi, M.R. Dehghani, Modeling CO2 solubility in aqueous Nmethyldiethanolamine solution by electrolyte modified Peng-Robinson plus association equation of state, Ind. Eng. Chem. Res. 51(2012) 9875-9885. [13] H. Planche, H. Renon, Mean spherical approximation applied to a simple but nonprimitive model interaction for electrolyte solutions and polar substances, J. Phys. Chem. 85(1981) 3924-3929. [14] G. Jin, M.D. Donohue, An equation of state for electrolyte solutions. 1. Aqueous systems containing strong electrolytes, Ind. Eng. Chem. Res. 27(1988) 1073-1084. [15] W. Fürst, H. Renon, Representation of excess properties of electrolyte solutions using a new equation of state, AIChE J. 39(1993) 335-343. [16] J.Z. Wu, J.M. Prausnitz, Phase equilibria for systems containing hydrocarbons, water, and salt:An extended Peng-Robinson equation of state, Ind. Eng. Chem. Res. 37(1998) 1634-1643. [17] A. Galindo, A. Gil-Villegas, G. Jackson, A.N. Burgess, SAFT-VRE:Phase behavior of electrolyte solutions with the statistical associating fluid theory for potentials of variable range, J. Phys. Chem. B 103(1999) 10272-10281. [18] J.A. Myers, S.I. Sandler, R.H.Wood, An equation of state for electrolyte solutions covering wide range of temperature, pressure and composition, Ind. Eng. Chem. Res. 41(2002) 3282-3297. [19] M.A. Clarke, P.R. Bishnoi, Development of a new equation of state for mixed salt and mixed solvent systems, and application to vapour-liquid and solid (hydrate)-vapour-liquid equilibrium calculations, Fluid Phase Equilib. 220(2004) 21-35. [20] L.F. Cameretti, G. Sadowski, J.M.Mollerup, Modeling of aqueous electrolyte solutions with perturbed-chain statistical associated fluid theory, Ind. Eng. Chem. Res. 44(2005) 3355-3362. [21] S.P. Tan, H. Adidharma, M. Radosz, Statistical associating fluid theory coupled with restricted primitive model to represent aqueous strong electrolytes, Ind. Eng. Chem. Res. 44(2005) 4442-4452. [22] Z. Liu, W.Wang, Y. Li, An equation of state for electrolyte solutions by a combination of low-density expansion of nonprimitive mean spherical approximation and statistical associating fluid theory, Fluid Phase Equilib. 227(2005) 147-156. [23] Y. Lin, K. Thomsen, J.C. Hemptinne, Multicomponent equations of state for electrolytes, AIChE J. 53(2007) 989-1005. [24] Y.S. Kim, C.S. Lee, An electrolyte equation of state based on a hydrogen-bonding nonrandom lattice fluid model for concentrated electrolyte solutions, Ind. Eng. Chem. Res. 47(2008) 5102-5111. [25] R. Inchekel, J. Hemptinne, W. Fürst, The simultaneous representation of dielectric constant, volume and activity coefficients using an electrolyte equation of state, Fluid Phase Equilib. 271(2008) 19-27. [26] A. Haghtalab, S.H. Mazloumi, A square-well equation of state for aqueous strong electrolyte solutions, Fluid Phase Equilib. 285(2009) 96-104. [27] A. Haghtalab, S.H.Mazloumi, A newcoordination number model for development of a square-well equation of state, Fluid Phase Equilib. 280(2009) 1-8. [28] M. Born, Volumen und hydratations warme der ionen, Zeitschrift Zeitschrift für Physik 1(1920) 45-49. [29] A. Harvey, T.W. Copeman, J.M. Prausnitz, Explicit approximation of the mean spherical approximation for electrolyte systems with unequal ion sizes, J. Phys. Chem. 92(1988) 6432-6436. [30] C.A. Haynes, J. Newman, On converting from the McMillan-Mayer framework I. Single-solvent system, Fluid Phase Equilib. 145(1998) 255-263. [31] R.H. Perry, D.W. Green, Perry's Chemical Engineers' Handbook, sixth ed. McGraw-Hill, Tokyo, Japan, 1988. [32] R.A. Robinson, R.H. Stokes, Electrolyte Solutions, second ed. Butterworths, London, 1970. [33] W.J. Hamer, Y.C. Wu, Osmotic coefficients and mean activity coefficients of uniunivalent electrolytes in water at 25℃, J. Phys. Chem. Ref. Data 1(1972) 1074-1099. [34] K.S. Pitzer, J.C. Peiper, R.H. Busey, Thermodynamic properties of aqueous sodium chloride solutions, J. Phys. Chem. Ref. Data 13(1984) 1-102. [35] D.G. Archer, Thermodynamic properties of the NaBr+H2O system, J. Phys. Chem. Ref. Data 20(1991) 509-555. [36] J. Ananthaswamy, G. Atklnson, Thermodynamics of concentrated electrolyte mixtures. 5. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.15-373.15 K, J. Chem. Eng. Data 30(1985) 120-128. [37] H.F. Holmes, R.E. Mesmer, Thermodynamics of aqueous solutions of the alkali metal sulfates, J. Solut. Chem. 15(1986) 495-517. |