[1] J. Jones, Converting solid wastes and residues to fuel, Chem. Eng. 85(1978) 87-94.[2] E.Mura, O. Debono, A. Villot, F. Paviet, Pyrolysis of biomass in a semi-industrial scale reactor: Study of the fuel-nitrogen oxidation during combustion of volatiles, Biomass Bioenergy 59(2013) 187-194.[3] J.M. Encinar, J.F. Gonzalez, J. Gonzalez, Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions, Fuel Process. Technol. 68(3) (2000) 209-222.[4] Y.F. Huang,W.H. Kuan, P.T. Chiueh, S.L. Lo, A sequentialmethod to analyze the kinetics of biomass pyrolysis, Bioresour. Technol. 102(19) (2011) 9241-9246.[5] K.L. Lam, A.O. Oyedun, C.W. Hui, Experimental andmodelling studies of biomass pyrolysis, Chin. J. Chem. Eng. 20(3) (2012) 543-550.[6] Y.F. Huang, P.T. Chiueh, W.H. Kuan, S.L. Lo, Pyrolysis kinetics of biomass from product information, Appl. Energy 110(2013) 1-8.[7] S. Hu, A. Jess,M. Xu, Kinetic study of Chinese biomass slow pyrolysis: Comparison of different kinetic models, Fuel 86(17-18) (2007) 2778-2788.[8] A. Meng, H. Zhou, L. Qin, Y. Zhang, Q. Li, Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis, J. Anal. Appl. Pyrolysis 104(2013) 28-37.[9] Ö. Çepelio?ullar, A.E. Pütün, Thermal and kinetic behaviors of biomass and plastic wastes in co-pyrolysis, Energy Convers. Manag. 75(2013) 263-270.[10] J. Chattopadhyay, C. Kim, R. Kim, D. Pak, Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics, Korean J. Chem. Eng. 25(5) (2008) 1047-1053.[11] A. Garcia-Maraver, D. Salvachua, M.J. Martinez, L.F. Diaz, M. Zamorano, Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees, Waste Manag. (11) (2013) 2245-2249.[12] G. Wang, A. Li, Thermal decomposition and kinetics of mixtures of polylactic acid and biomass during copyrolysis, Chin. J. Chem. Eng. 16(6) (2008) 929-933.[13] L. Burhenne, J. Messmer, T. Aicher, M.-P. Laborie, The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis, J. Anal. Appl. Pyrolysis 101(2013) 177-184.[14] B. Peters, Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin, Fuel Process. Technol. 92(10) (2011) 1993-1998.[15] C. Couhert, J.-M. Commandre, S. Salvador, Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel 88(3) (2009) 408-417.[16] A. Gani, I. Naruse, Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass, Renew. Energy 32(4) (2007) 649-661.[17] S. Karaman, M.T. Yilmaz, A. Kayacier, Simplex lattice mixture design approach on the rheological behavior of glucomannan based salep-honey drinkmixtures: An optimization study based on the sensory properties, Food Hydrocoll. 25(5) (2011) 1319-1326.[18] Q. Liu, Z. Zhong, S.Wang, Z. Luo, Interactions of biomass components during pyrolysis: A TG-FTIR study, J. Anal. Appl. Pyrolysis 90(2) (2011) 213-218.[19] P.V. Rao, S.S. Baral, Experimental design of mixture for the anaerobic co-digestion of sewage sludge, Chem. Eng. J. 172(2-3) (2011) 977-986.[20] S. Azevedo, L.M. Cunha, P.V. Mahajan, S.C. Fonseca, Application of simplex lattice design for development of moisture absorber for oystermushrooms, Procedia Food Sci. 1(2011) 184-189.[21] S.M. Teimouri Sendesi, J. Towfighi, K. Keyvanloo, Effect of iron, phosphorous, and Si/Al on HZSM-5 catalytic performance and stability by response surfacemethodology, J. Anal. Appl. Pyrolysis 104(2013) 695-702.[22] S. Chayaporn, P. Sungsuk, S. Sunphorka, P. Kuchonthara, P. Piumsomboon, B. Chalermsinsuwan, Evaluation of biomass component effect on kinetic values for biomass pyrolysis using simplex lattice design, Korean J. Chem. Eng. 32(6) (2015) 1081-1093.[23] C.-P. Lin, Y.-M. Chang, J.P. Gupta, C.-M. Shu, Comparisons of TGA and DSC approaches to evaluate nitrocellulose thermal degradation energy and stabilizer efficiencies, Process Saf. Environ. 88(6) (2010) 413-419.[24] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29(11) (1957) 1702-1706.[25] J. Lehmann, S. Joseph, Biochar for environmentalmanagement: Science and technology, Earthscan, London, UK, 2009.[26] S. Irmak, M. Kurtulus, A. Hasanoglu, O. Erbatur, Gasification efficiencies of cellulose, hemicellulose and lignin fractions of biomass in aqueous media by using Pt on activated carbon catalyst, Biomass Bioenergy 49(2013) 102-108.[27] R. Comesana, M.A. Gomez, M.A. Alvarez, P. Eguia, Thermal lag analysis on a simulated TGA-DSC device, Thermochim. Acta 547(2012) 13-21.[28] H. Yang, R. Yan, H. Chen, C. Zheng, D.H. Lee, D.T. Liang, In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin, Energy Fuel 20(1) (2005) 388-393.[29] G.Wang,W. Li, B. Li, H. Chen, TG study on pyrolysis of biomass and its three components under syngas, Fuel 87(4-5) (2008) 552-558.[30] M. Brebu, S. Ucar, C. Vasile, J. Yanik, Co-pyrolysis of pine cone with synthetic polymers, Fuel 89(2010) 1911-1918.[31] N. Worasuwannarak, T. Sonobe, W. Tanthapanichakoon, Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique, J. Anal. Appl. Pyrolysis 78(2007) 265-271.[32] T.E. Odetoye, K.R. Onifade, M.S. AbuBakar, J.O. Titiloye, Thermochemical characterisation of Parinari polyandra Benth fruit shell, Ind. Crop. Prod. 44(2013) 62-66.[33] M. Carrier, A. Loppinet-Serani, D. Denux, J.-M. Lasnier, F. Ham-Pichavant, F. Cansell, et al., Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass, Biomass Bioenergy 35(2011) 298-307.[34] D. Li, L. Chen, X. Zhang, N. Ye, F. Xing, Pyrolytic characteristics and kinetic studies of three kinds of red algae, Biomass Bioenergy 35(2011) 1765-1772.[35] W.-H. Chen, H.-C. Hsu, K.-M. Lu, W.-J. Lee, T.-C. Lin, Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass, Energy 36(2011) 3012-3021.[36] J. Zeng, D. Singh, S. Chen, Thermal decomposition kinetics of wheat straw treated by Phanerochaete chrysosporium, Int. Biodeterior. Biodegrad. 65(2011) 410-414.[37] J.O. Titiloye, M.S. Abu Bakar, T.E. Odetoye, Thermochemical characterisation of agricultural wastes from West Africa, Ind. Crop. Prod. 47(2013) 199-203.[38] N. Sonoyama, J.-I. Hayashi, Characterisation of coal and biomass based on kinetic parameter distributions for pyrolysis, Fuel 114(2013) 206-215. |