[1] L. Bocquet, E. Charlaix, Nanofluidics, from bulk to interfaces, Chem. Soc. Rev. 39(2010) 1073-1095. [2] R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification:A bright future inwater desalination, Desalination 336(2014) 97-109. [3] S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nat. Nanotechnol. 10(2015) 459-464. [4] J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312(2006) 1034-1037. [5] J. Kou, X. Zhou, H. Lu, F. Wu, J. Fan, Graphyne as the membrane for water desalination, Nanoscale 6(2014) 1865-1870. [6] D. Cohen-Tanugi, J.C. Grossman, Nanoporous graphene as a reverse osmosis membrane:Recent insights from theory and simulation, Desalination 366(2015) 59-70. [7] M. Thomas, B. Corry, T.A. Hilder, What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation? Small 10(2014) 1453-1465. [8] V.P. Sokhan, D. Nicholson, N. Quirke, Fluid flow in nanopores:Accurate boundary conditions for carbon nanotubes, J. Chem. Phys. 117(2002) 8531-8539. [9] S.K. Kannam, B.D. Todd, J.S. Hansen, P.J. Daivis, How fast does water flow in carbon nanotubes? J. Chem. Phys. 138(2013) 094701. [10] M. Whitby, N. Quirke, Fluid flow in carbon nanotubes and nanopipes, Nat. Nanotechnol. 2(2007) 87-94. [11] S. Joseph, N.R. Aluru, Why are carbon nanotubes fast transporters of water? Nano Lett. 8(2008) 452-458. [12] K. Zhao, H. Wu, Fast water thermo-pumping flow across nanotube membranes for desalination, Nano Lett. (2015). [13] S. Özerinç, S. Kakaç, A. Yazıcıoğlu, Enhanced thermal conductivity of nanofluids:A state-of-the-art review, Microfluid. Nanofluid. 8(2010) 145-170. [14] J. Lv, W. Cui, M. Bai, X. Li, Molecular dynamics simulation on flow behavior of nanofluids between flat plates under shear flow condition, Microfluid. Nanofluid. 10(2011) 475-480. [15] M.M. MacDevette, T.G. Myers, B. Wetton, Boundary layer analysis and heat transfer of a nanofluid, Microfluid. Nanofluid. 17(2014) 401-412. [16] W. Cheng, R. Sadr, Induced flow field of randomly moving nanoparticles:A statistical perspective, Microfluid. Nanofluid. 18(2015) 1317-1328. [17] K. Das, Nanofluid flow over a shrinking sheet with surface slip, Microfluid. Nanofluid. 16(2014) 391-401. [18] M.-J.Wei, J. Zhou, X. Lu, Y. Zhu,W. Liu, L. Lu, L. Zhang, Diffusion of water molecules confined in slits of rutile TiO2(110) and graphite(0001), Fluid Phase Equilib. 302(2011) 316-320. [19] M.-J.Wei, L. Zhang, L. Lu, Y. Zhu, K.E. Gubbins, X. Lu, Molecular behavior of water in TiO2 nano-slits with varying coverages of carbon:A molecular dynamics simulation study, Phys. Chem. Chem. Phys. 14(2012) 16536-16543. [20] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91(1987) 6269-6271. [21] B. Guillot, Y. Guissani, How to build a better pair potential for water, J. Chem. Phys. 114(2001) 6720-6733. [22] A.V. Bandura, J.D. Kubicki, Derivation of force field parameters for TiO2-H2O systems from ab initio calculations, J. Phys. Chem. B 107(2003) 11072-11081. [23] R.T. Cygan, J.-J. Liang, A.G. Kalinichev,Molecularmodels of hydroxide, oxyhydroxide, and clay phases and the development of a general force field, J. Phys. Chem. B 108(2004) 1255-1266. [24] K.P. Travis, B.D. Todd, D.J. Evans, Poiseuille flow of molecular fluids, Phys. A Stat. Mech. Appl. 240(1997) 315-327. [25] B.D. Todd, Computer simulation of simple and complex atomistic fluids by nonequilibrium molecular dynamics techniques, Comput. Phys. Commun. 142(2001) 14-21. [26] M. Predota, P.T. Cummings, D.J.Wesolowski, Electric double layer at the rutile (110) surface. 3. Inhomogeneous viscosity and diffusivity measurement by computer simulations, J. Phys. Chem. C 111(2007) 3071-3079. [27] A. Botan, B. Rotenberg, V. Marry, P. Turq, B.T. Noetinger, "Hydrodynamics in clay nanopores", J. Phys. Chem. C 115(2011) 16109-16115. [28] V.P. Sokhan, D. Nicholson, N. Quirke, Fluid flow in nanopores:An examination of hydrodynamic boundary conditions, J. Chem. Phys. 115(2001) 3878-3887. [29] http://lammps.sandia.gov. [30] A. Baranyai, D.J. Evans, P.J. Daivis, Isothermal shear-induced heat flow, Phys. Rev. A 46(1992) 7593-7600. [31] K.P. Travis, D.J. Evans,Molecular spin in a fluid undergoing Poiseuille flow, Phys. Rev. E 55(1997) 1566-1572. [32] B. Kim, A. Beskok, T. Cagin, Viscous heating in nanoscale shear driven liquid flows, Microfluid. Nanofluid. 9(2010) 31-40. [33] B.D. Todd, P.J. Daivis, D.J. Evans, Heat flux vector in highly inhomogeneous nonequilibrium fluids, Phys. Rev. E 51(1995) 4362-4368. [34] B. Kim, A. Beskok, T. Cagin, Thermal interactions in nanoscale fluid flow:Molecular dynamics simulations with solid-liquid interfaces, Microfluid. Nanofluid. 5(2008) 551-559. [35] X. Liang, Some effects of interface on fluid flow and heat transfer on micro-and nanoscale, Chin. Sci. Bull. 52(2007) 2457-2472. |