[1] E.S. Szalai, P. Arratia, K. Johnson, F.J. Muzzio, Mixing analysis in a tank stirred with Ekato Intermig® impellers, Chem. Eng. Sci. 59(2004) 3793-3805. [2] R. Verzicco, M. Fatica, G. Iaccarino, P. Orlandi, Flow in an impeller-stirred tank using an immersed-boundary method, AIChE J. 50(2004) 1109-1118. [3] J.H. Ferziger, M. Peric, Computationalmethods for fluid dynamics, third ed. Springer, Berlin; New York, 2002. [4] W.J. Gordon, C.A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generation, Int. J. Numer. Methods Eng. 7(1973) 461-477. [5] J.Y. Luo, R.I. Issa, A.D. Gosman, Prediction of impeller induced flows inmixing vessels using multiple frames of reference, Eighth European conference on mixing 1994, pp. 549-556. [6] J.Y. Luo, A.D. Gosman, R.I. Issa, J.C.Middleton,M.K. Fitzgerald, Full flow-field computation of mixing in baffled stirred vessels, Chem. Eng. Res. Des. 71(1993) 342-344. [7] D. Deglon, C. Meyer, CFD modelling of stirred tanks:Numerical considerations, Miner. Eng. 19(2006) 1059-1068. [8] F. Kerdouss, A. Bannari, P. Proulx, CFD modeling of gas dispersion and bubble size in a double turbine stirred tank, Chem. Eng. Sci. 61(2006) 3313-3322. [9] M. Vakili, M. Esfahany, CFD analysis of turbulence in a baffled stirred tank, a threecompartment model, Chem. Eng. Sci. 64(2009) 351-362. [10] K. Ng, N. Fentiman, K. Lee, M. Yianneskis, Assessment of sliding mesh CFD predictions and LDA measurements of the flow in a tank stirred by a Rushton impeller, Chem. Eng. Res. Des. 76(1998) 737-747. [11] M. Sommerfeld, S. Decker, State of the art and future trends in CFD simulation of stirred vessel hydrodynamics, Chem. Eng. Technol. 27(2004) 215-224. [12] F. Thibault, P.A. Tanguy, Power-drawanalysis of a coaxialmixerwith Newtonian and non-Newtonian fluids in the laminar regime, Chem. Eng. Sci. 57(2002) 3861-3872. [13] C.S. Peskin, Flow patterns around heart valves:A numerical method, J. Comput. Phys. 10(1972) 252-271. [14] J. Kim, An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys. 171(2001) 132-150. [15] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161(2000) 35-60. [16] M. Uhlmann, An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys. 209(2005) 448-476. [17] Z.-G. Feng, E.E. Michaelides, Heat transfer in particulate flows with Direct Numerical Simulation (DNS), Int. J. Heat Mass Transf. 52(2009) 777-786. [18] N.G. Deen, S.H.L. Kriebitzsch, M.A. van der Hoef, J.A.M. Kuipers, Direct numerical simulation of flow and heat transfer in dense fluid-particle systems, Chem. Eng. Sci. 81(2012) 329-344. [19] B.E. Griffith, R.D. Hornung, D.M. Mcqueen, C.S. Peskin, An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys. 223(1) (2010) 10-49. [20] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37(2005) 239-261. [21] J.G.M. Eggels, Direct and large-eddy simulation of turbulent fluid flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid Flow 17(1996) 307-323. [22] J. Derksen, H.E.A. Van den Akker, Large eddy simulations on the flow driven by a Rushton turbine, AIChE J. 45(1999) 209-221. [23] F. Sbrizzai, V. Lavezzo, R. Verzicco, M. Campolo, A. Soldati, Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor, Chem. Eng. Sci. 61(9) (2006) 2843-2851. [24] D. Goldstein, R. Handler, L. Sirovich, Modeling a no-slip flow boundary with an external force-field, J. Comput. Phys. 105(1993) 354-366. [25] T. Kajishima, S. Takiguchi, H. Hamasaki, Y. Miyake, Turbulence structure of particleladen flow in a vertical plane channel due to vortex shedding, JSME Int. J. Ser. B Fluids Therm. Eng. 44(2001) 526-535. [26] Mohd-Yusof, Combined immersed boundary B spline methods for simulations of flow in complex geometries, Annu. Res. Briefs (1997) 317-327. [27] X. Yang, X. Zhang, Z. Li, G.-W. He, A smoothing technique for discrete delta functions with application to immersed boundary method inmoving boundary simulations, J. Comput. Phys. 228(2009) 7821-7836. [28] T. Kajishima, S. Takiguchi, H. Hamasaki, Y. Miyake, Turbulence structure of particleladen flowin a vertical Plane Channel due to vortex shedding, JSME Int. J. Ser. B Fluids Therm. Eng. 44(2001) 526-535. [29] J.J.J. Gillissen, H.E.A. Van den Akker, Direct numerical simulation of the turbulent flow in a baffled tank driven by a Rushton turbine, AIChE J. 58(2012) 3878-3890. [30] M. Tyagi, S. Roy, A.D.H. Iii, S. Acharya, Simulation of laminar and turbulent impeller stirred tanks using immersed boundary method and large eddy simulation technique in multi-block curvilinear geometries, Chem. Eng. Sci. 62(2007) 1351-1363. [31] J.K. Wiens, J.M. Stockie, An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver, J. Comput. Phys. 281(2013) 917-941. [32] E. Givelberg, K. Yelick, Distributed immersed boundary simulation in titanium, SIAM J. Sci. Comput. 28(2006) 1361-1378. [33] H. Hartmann, J.J. Derksen, C. Montavon, J. Pearson, I.S. Hamill, H.E.A. van den Akker, Assessment of large eddy and RANS stirred tank simulations by means of LDA, Chem. Eng. Sci. 59(2004) 2419-2432. [34] R.M. Jones, A.D. Harvey, S. Acharya, Two-equation turbulence modeling for impeller stirred tanks, J. Fluids Eng. 123(2001) 640. [35] S.B. Pope, Turbulent flows, Cambridge University Press, Cambridge; New York, 2000. [36] J. Smagorinsky, General circulation experiments with the primitive equations, I. The basic experiment, Mon. Weather Rev. 91(1963) 99-164. [37] C. Meneveau, T.S. Lund, W.H. Cabot, A Lagrangian dynamic subgrid-scale model of turbulence, J. Fluid Mech. 319(1996) 353-385. [38] H. Hartmann, J.J. Derksen, C. Montavon, J. Pearson, I.S. Hamill, H.E.A.V.D. Akker, Assessment of large eddy and RANS stirred tank simulations by means of LDA, Chem. Eng. Sci. 59(2419-2432) (2004). [39] C.S. Peskin, The immersed boundary method, Acta Numer. 11(2003) 479-517. [40] B.K. Cook, A numerical framework for the direct simulation of solid-fluid systems, Massachusetts Institute of Technology, 2001. [41] J. O'Rourke, Computational geometry in C, second ed. Cambridge University Press, Cambridge; New York, 1998. [42] W. Gropp, E. Lusk, Using MPI-2:a problem-based approach, Recent advances in parallel virtualmachine andmessage passing Interface, Proceedings, 36662005, p. 8. [43] C. Ji, A. Munjiza, J.J.R. Williams, A novel iterative direct-forcing immersed boundary method and its finite volume applications, J. Comput. Phys. 231(2012) 1797-1821. [44] S. Di, W. Ge, Simulation of dynamic fluid-solid interactions with an improved direct-forcing immersed boundary method, Particuology 18(2015) 22-34. [45] L. Dong, S.T. Johansen, T.A. Engh, Flow induced by an impeller in an unbaffled tank-I. Experimental, Chem. Eng. Sci. 49(1994) 549-560. [46] A. Bakker, L.M. Oshinowo, Modelling of turbulence in stirred vessels using large Eddy simulation, Chem. Eng. Res. Des. 82(2004) 1169-1178. [47] J. Derksen, Highly resolved simulations of solids suspension in a small mixing tank, AICHE J. 58(2012) 3266-3278. [48] J. Li, W. Ge, W. Wei, X.L. Ning Yang, L. Wang, X. He, X. Wang, J. Wang, M. Kwauk, From multiscale modeling to meso-science:a chemical engineering perspectiveprinciples, modeling, simulation and applications, Springer, London, 2013476. [49] M.A. van der Hoef, M. van Sint Annaland, N.G. Deen, J.A.M. Kuipers, Numerical simulation of dense gas-solid fluidized beds:Amultiscalemodeling strategy, Annu. Rev. Fluid Mech. 40(2008) 47-70. [50] P.A. Cundall, O.D.L. Strack, A discrete numerical-model for granular assemblies, Geotechnique 29(1979) 47-65. [51] J. Xu, H. Qi, X. Fang, L. Lu, W. Ge, X.Wang, M. Xu, F. Chen, X. He, J. Li, Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing, Particuology 9(2011) 446-450. [52] T. Kempe, J. Fröhlich, Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids, J. Fluid Mech. 709(2012) 445-489. [53] H.H. Hu, Direct simulation of flows of solid-liquidmixtures, Int. J. Multiphase Flow 22(1996) 335-352. [54] T. Kempe, J. Fröhlich, An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J. Comput. Phys. 231(2012) 3663-3684. [55] A. Guida, A.W. Nienow, M. Barigou, PEPT measurements of solid-liquid flow field and spatial phase distribution in concentrated monodisperse stirred suspensions, Chem. Eng. Sci. 65(2010) 1905-1914. |