[1] P. Kruger, Electric power requirement for large-scale production of hydrogen fuel for the world vehicle fleet, Int. J. Hydrog. Energy 26(2001) 1137-1147. [2] R. Schlögl, The role of chemistry in the energy challenge, ChemSusChem 3(2010) 209-222. [3] J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catal. Today 139(2009) 244-260. [4] S. Onsuratoom, T. Puangpetch, T. Chavadej, Comparative investigation of hydrogen production over Ag-, Ni-, and Cu-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts, Chem. Eng. J. 173(2011) 667-675. [5] G.A. Olah, Towards oil independence through renewable methanol chemistry, Angew. Chem. Int. Ed. 52(2013) 104-107. [6] A.W. Jasper, S.J. Klippenstein, L.B. Harding, B. Ruscic, Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition, J. Phys. Chem. A 111(2007) 3932-3950. [7] I.V. Yudanov, A.V. Matveev, K.M. Neyman, N. Rösch, How the C-O bond breaks during methanol decomposition on nanocrystallites of palladium catalysts, J. Am. Chem. Soc. 130(2008) 9342-9352. [8] J.R. Lattner, M.P. Harold, Autothermal reforming of methanol:experiments and modeling, Catal. Today 120(2007) 78-89. [9] I. Eswaramoorthi, V. Sundaramurthy, A.K. Dalai, Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu-Zn catalysts, Catal. Today 313(2006) 22-34. [10] S. Sá, H. Silva, L. Brandão, J.M. Sousaa, A. Mendes, Catalysts for methanol steam reforming-A review, Appl. Catal. B 99(2010) 43-57. [11] B. Frank, F.C. Jentoft, H. Soerijanto, J. Kröhnert, R. Schlögl, R. Schomäcker, Steam reforming ofmethanol over copper-containing catalysts:Influence of support material on microkinetics, J. Catal. 246(2007) 177-192. [12] D.R. Palo, R.A. Dagle, J.D. Holladay, Methanol steam reforming for hydrogen production, Chem. Rev. 107(2007) 3992-4021. [13] K. Takehira, T. Shishido, Preparation of supported metal catalysts starting from hydrotalcites as the precursors and their improvements by adopting "memory effect", Catal. Surv. Jpn. 11(2007) 1-30. [14] J.P. Breen, J.R.H. Ross,Methanol reforming for fuel-cell applications:Development of zirconia-containing Cu-Zn-Al catalysts, Catal. Today 51(1999) 521-533. [15] M.M. Günter, T. Ressler, R.E. Jentoft, B. Bems, Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy, J. Catal. 203(2001) 133-149. [16] C.C. Chang, J.W.Wang, C.T. Chang, B.J. Liaw, Y.Z. Chen, Effect of ZrO2 on steamreforming of methanol over CuO/ZnO/ZrO2/Al2O3 catalysts, Chem. Eng. J. 192(2012) 350-356. [17] W.Y. Tong, K. Cheung, A. West, K.M. Yu, S.C.E. Tsang, Direct methanol steam reforming to hydrogen over CuZnGaOx catalysts without CO post-treatment:mechanistic considerations, Phys. Chem. Chem. Phys. 15(2013) 7240-7248. [18] L. Alejo, R. Lago, M.A. Peña, J.L.G. Fierro, Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts, Appl. Catal. A 162(1997) 281-297. [19] M.V. Twigg, M.S. Spencer, Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis, Top. Catal. 22(2003) 191-203. [20] G. Huang, B.J. Liaw, C.J. Jhang, Y.Z. Chen, Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts, Appl. Catal. A 358(2009) 7-12. [21] J. Agrell, H. Birgersson, M. Boutonnet, I.M. Cabrera, R.M. Navarro, J.L.G. Fierro, Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3, J. Catal. 219(2003) 389-403. [22] G. Nahar, V. Dupont, Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria-zirconia supported catalysts:Review, Renew. Sust. Energ. Rev. 32(2014) 777-796. [23] L. Zhang, L.W. Pan, C.J. Ni, T.J. Sun, S.S. Zhao, S.D. Wang, A.J. Wang, Y.K. Hu, CeO2-ZrO2-promoted CuO/ZnO catalyst formethanol steamreforming, Int. J. Hydrog. Energy 38(2013) 4397-4406. [24] S. Patel, K.K. Pant, Selective production of hydrogen via oxidative steamreforming of methanol using Cu-Zn-Ce-Al oxide catalysts, Chem. Eng. Sci. 62(2007) 5436-5443. [25] S.D. Jones, H.E. Hagelin-Weaver, Steamreforming ofmethanol over CeO2-and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3, Appl. Catal. B 90(2009) 195-204. [26] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, Effect of dopants on the performance of CuO-CeO2 catalysts in methanol steam reforming, Appl. Catal. B (2007) 226-234. [27] T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, K. Takehira, Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol, Appl. Catal. A 263(2004) 249-253. [28] S.G. Sanches, J.H. Flores, R.R. de Avillez, M.I.P. da Silva, Influence of preparation methods and Zr and Y promoters on Cu/ZnO catalysts used for methanol steam reforming, Int. J. Hydrog. Energy 37(2012) 6572-6579. [29] J.E. Park, S.D. Yim, C.S. Kim, E.D. Park, Steam reforming of methanol over Cu/ZnO/ZrO2/Al2O3 catalyst, Int. J. Hydrog. Energy 39(2014) 11517-11527. [30] P. Kurr, I. Kasatkin, F. Girgsdies, A. Trunschke, R. Schlőgl, T. Ressler, Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming-A comparative study, Appl. Catal. A 348(2008) 153-164. [31] V. Agarwal, S. Patel, K.K. Pant, H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts:Transient deactivation kinetics modeling, Appl. Catal. A 279(2005) 155-164. [32] S. Sá, J.M. Sousa, A. Mendes, Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst, Chem. Eng. Sci. 66(2011) 4913-4921. [33] J.P. Shen, C.S. Song, Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells, Catal. Today 77(2002) 89-98. [34] L. Guczi, A. Erdôhelyi, Catalysis for alternative energy generation, Springer Science & Business Media, 2012. [35] J.W. Evans, M.S. Wainwright, A.J. Bridgewater, D.J. Young, On the determination of copper surface area by reaction with nitrous oxide, Appl. Catal. 7(1983) 75-83. [36] G.C. Chinchen, C.M. Hay, H.D. Vandervell, K.C. Waugh, The measurement of copper surface areas by reactive frontal chromatography, J. Catal. 103(1987) 79-86. [37] Z.M. Zhou, X. Li, T.Y. Zeng, W.B. Hong, Z.M. Cheng, W.K. Yuan, Kinetics of hydrogenolysis of glycerol to propylene glycol over Cu-ZnO-Al2O3 catalysts, Chin. J. Chem. Eng. 18(2010) 384-390. [38] Y. Qi, Z.M. Cheng, Z.M. Zhou, Steamreforming ofmethane over Ni catalysts prepared from hydrotalcite-type precursors:Catalytic activity and reaction kinetics, Chin. J. Chem. Eng. 23(2015) 76-85. [39] B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, Methanol steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model, Appl. Catal., A 179(1999) 31-49. [40] C.L. Yaws, Chemical properties handbook, McGraw-Hill, New York, 1999. [41] J.K. Lee, J.B. Ko, D.H. Kim,Methanol steam reforming over Cu/ZnO/Al2O3 catalyst:Kinetics and effectiveness factor, Appl. Catal. A 278(2004) 25-35. [42] T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira, Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation, Appl. Catal. A 303(2006) 62-71. [43] J.Baneshi,M.Haghighi, N. Jodeiri,M. Abdollahifar, H. Ajamein, Urea-nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production, Ceram. Int. 40(2014) 14177-14184. [44] R. Shokrani, M. Haghighi, N. Jodeiri, H. Ajamein, M. Abdollahifar, Fuel cell grade hydrogen production viamethanol steamreforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea nitrates combustion method, Int. J. Hydrog. Energy 39(2014) 13141-13155. [45] S.D. Jones, L.M. Neal, M.L. Everett, G.B. Hoflund, H.E. Hagelin-Weaver, Characterization of ZrO2-promoted Cu/ZnO/nano-Al2O3 methanol steam reforming catalysts, Appl. Surf. Sci. 256(2010) 7345-7353. [46] L. Cao, C.J. Ni, Z.S. Yuan, S.D. Wang, Correlation between catalytic selectivity and oxygen storage capacity in autothermal reforming ofmethane over Rh/Ce0.45Zr0.45RE0.1 catalysts (RE=La, Pr, Nd, Sm, Eu, Gd, Tb), Chem. Commun. 10(2009) 1192-1195. [47] W.J. Shan, Z.C. Feng,Z.L. Li, J. Zhang,W.J. Shen,C. Li, Oxidative steamreforming ofmethanol on Ce0.9Cu0.1Oy catalysts prepared by deposition-precipitation, coprecipitation, and complexation-combustion methods, J. Catal. 228(2004) 206-217. [48] S.T. Yong, C.W. Ooi, S.P. Chai, X.S.Wu, Review of methanol reforming Cu based catalysts, surface reaction mechanisms, and reaction schemes, Int. J. Hydrog. Energy 38(2013) 9541-9552. [49] S. Patel, K.K. Pant, Experimental study and mechanistic kinetic modeling for selective production of hydrogen via catalytic steam reforming of methanol, Chem. Eng. Sci. 62(2007) 5425-5435. [50] H. Silva, C. Mateos-Pedrero, P. Ribeirinha, M. Boaventura, A. Mendes, Lowtemperature methanol steam reforming kinetics over a novel CuZrDyAl catalyst, React. Kinet. Mech. Catal. 115(2015) 321-339. |