[1] K. Barazandeh, O. Dehghani, M. Hamidi, E. Aryafard, M.R. Rahimpour, Investigation of coil outlet temperature effect on the performance of naphtha cracking furnace, Chem. Eng. Res. Des. 94(2014) 307-316. [2] N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to prouce light olefins:a review, Appl. Catal. A Gen. 398(1-2) (2011) 1-17. [3] J. Knoll, U. Singh, J. Nicolich, R. Gonzalez, M. Ziebarth, C. Fougret, S. Brandt, Unit cell volume as a measure of dealumination of ZSM-5 in fluid catalytic cracking catalyst, Ind. Eng. Chem. Res. 53(42) (2014) 16270-16274. [4] T. Ren, M. Patel, K. Blok, Olefins from convection and heavy feedstocks:energy use in steam cracking and alternative processes, Energy 31(4) (2006) 425-451. [5] J.J. Gao, J. Du, Optimizing cracked stock, enhancing ethylene yield, Pet. Petrochem. 7(2010) 31-34. [6] S. Ghorai, K.D.P. Nigam, CFD modeling of flow profiles and interfacial phenomena in two-phase flow in pipes, Chem. Eng. Process. 45(1) (2006) 55-65. [7] S.C.K. De Schepper, G.J. Heynderickx, G.B. Marin, CFD modeling of all gas-liquid and vapor-liquid flow regimes predicted by the Baker chart, Chem. Eng. J. 138(1-3) (2008) 349-357. [8] S.C.K. De Schepper, G.J. Heynderickx, G.B. Marin, Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker, Comput. Chem. Eng. 33(1) (2009) 122-132. [9] S.C.K. De Schepper, G.J. Heynderickx, G.B. Marin, Coupled simulation of the flue gas and process gas side of a steam cracker convection, AIChE J. 55(11) (2009) 2773-2787. [10] B. Basu, D. Kunzru, Catalyst pyrolysis of naphtha, Ind. Eng. Chem. Res. 31(1992) 146-155. [11] P.S. Van Damme, G.F. Froment,W.B. Balthasar, Scaling up of naphtha cracking coils, Ind. Eng. Chem. Process. Des. Dev. 20(2) (1981) 366-376. [12] K.M. Van Geem, G.J. Heynderickx, G.B.Marin, Effect of radial temperature profiles on yields in steam cracking, AIChE J. 50(2004) 173-183. [13] M.W.M. van Goethem, S. Barendregt, J. Grievink, P.J.T. Verheijen, M. Dente, E. Ranzi, A kinetic modeling study of ethane cracking for optimal ethylene yield, Chem. Eng. Res. Des. 91(6) (2013) 1106-1110. [14] P. Kumar, D. Kunzru,Modeling of naphtha pyrolysis, Ind. Eng. Chem. Process. Des. Dev. 24(3) (1985) 774-782. [15] Z. Geng, Y. Cui, L. Xia, Q. Zhu, G. Xiangbai, Compromising adjustment solution of primary reaction coefficients in ethylene cracking furnace modeling, Chem. Eng. Sci. 80(2012) 16-29. [16] S. Seifzadeh Haghighi, M.R. Rahimpour, S. Raeissi, O. Dehghani, Investigation of ethylene production in naphtha thermal cracking plant in presence of steam and carbon dioxide, Chem. Eng. J. 228(15) (2013) 1158-1167. [17] N. Zhang, T. Qiu, B. Chen, CFD simulation of propane cracking tube detailed radical kinetic mechanism, Chin. J. Chem. Eng. 21(12) (2013) 1319-1331. [18] G. Hu, H.Wang, F. Qian, Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces, Chem. Eng. Sci. 66(8) (2011) 1600-1611. [19] G. Hu, H. Wang, F. Qian, Y. Zhang, J. Li, Comprehensive CFD simulation of product yields and coking rates for a floor-and wall-fired naphtha cracking furnace, Ind. Eng. Chem. Res. 50(24) (2011) 13672-13685. [20] M.E. Masoumi, S.M. Sadrameli, J. Towfighi, A. Niaei, Simulation, optimization and control of a thermal cracking furnace, Energy 31(4) (2006) 516-527. [21] M. Berreni, M. Wang, Modelling and dynamic optimization of thermal cracking of propane for ethylene manufacturing, Comput. Chem. Eng. 35(12) (2011) 2876-2885. [22] S. Zheng, X. Zhang, C. Qi, H. Zhou, Modeling of heat transfer and pyrolysis reactions in ethylene cracking furnace based on 3-D combustion monitoring, Int. J. Therm. Sci. 94(2015) 28-36. [23] L. Li, Co-pyrolysis and separate pyrolysis of hydrocarbon, Chem. Eng. He Nan 1(1990) 15-16. [24] K.M. Van Geem, D. Hudebine,M.F. Reynier, F.Wahl, J.J. Verstraete, G.B.Marin,Molecular reconstruction of naphtha steam cracking feestocks based on commercial indices, Comput. Chem. Eng. 31(9) (2007) 1020-1034. [25] K.M. Van Geem, R. Zajdlik, M.F. Reynier, G.B. Marin, Dimensional analysis for scaling up and down steam cracking coils, Chem. Eng. J. 134(2007) 3-10. [26] G. Hu, H.Wang, F. Qian, K.M. Van Geem, C.M. Schietekat, G.B.Marin, Couple simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners, Comput. Chem. Eng. 38(5) (2012) 24-34. [27] M.T. Klein, G. Hou, R.J. Bertolacini, L.K. Broadbelt, A. Kumar, Molecular modeling in heavy hydrocarbon conversions, Fuel 86(12-13) (2007) 2023. [28] J.J. Verstraete, N. Revellin, H. Dulot, D. Hudebine, Molecular reconstruction of vacuum gasoils, Abstr. Pap. Am. Chem. Soc. 227(2004) (010-FUEL). [29] S.P. Pyl, K.M. Van Geem, M.F. Reyniers, G.B. Marin, Molecular reconstruction of complex hydrocarbon mixtures:an application of principal component analysis, AIChE J. 56(12) (2010) 3174-3188. [30] R.C. Reid, J.M. Prausnitz, B.R. Poling, Properties of Gases and Liquids, McGraw-Hill, 1979. [31] D.B. Meade, B.S. Haran, R.E.White, The shooting technique for solution of two-point boundary value problems, Mapletech 3(1996) 85-93. |