[1] J. Mol, Industrial applications of olefin metathesis, J. Mol. Catal. A Chem. 213(2004) 39-45. [2] Y. Yang, H. Xiang, R. Zhang, et al., A highly active and stable Fe-Mn catalyst for slurry Fischer-Tropsch synthesis, Catal. Today 106(2005) 170-175. [3] F. Fazlollahi, M. Sarkari, H. Gharebaghi, et al., Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch catalyst and its catalytic kinetics for the hydrogenation of carbon monoxide, Chin. J. Chem. Eng. 21(5) (2013) 507-519. [4] M. Bjorgen, S. Svelle, F. Joensen, et al., Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:on the origin of the olefinic species, J. Catal. 249(2007) 195-207. [5] Lixiang Jiang, Chufu Li, Ming Xu, et al., Investigation on and industrial application of degrading of methanol feed in methanol to propylene process, Chin. J. Chem. Eng. 26(2018) 2102-2111. [6] X. Sun, S. Mueller, H. Shi, et al., On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5, J. Catal. 314(2014) 21-31. [7] Z. Wang, G. Jiang, Z. Zhao, et al., Highly efficient P-modified HZSM-5 catalyst for the coupling transformation of methanol and 1-butene to propene, Energy Fuel 24(2) (2010) 758-763. [8] Y.W. Cheng, H. Zou, W.L. Liu, et al., A method for producing light olepins by cocatalytic cracking of Fischer-Tropsch distillate with methanol, CN Pat., CN108276238A, 2018. [9] X. Sun, S. Mueller, Y. Liu, et al., On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5, J. Catal. 317(2014) 185-197. [10] R.M. Dessau, On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins, J. Catal. 99(1986) 111-116. [11] S. Svelle, P.O. Rønning, S. Kolboe, Kinetic studies of zeolite-catalyzed methylation reactions:1. Coreaction of[12C] ethene and[13C] methanol, J. Catal. 224(2004) 115-123. [12] S. Svelle, P.O. Rønning, U. Olsbye, et al., Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of[12C] propene or[12C] n-butene and[13C] methanol, J. Catal. 234(2005) 385-400. [13] Z.M. Cui, Q. Liu, Z. Ma, et al., Direct observation of olefin homologations on zeolite ZSM-22 and its implications to methanol to olefin conversion, J. Catal. 258(2008) 83-86. [14] W.Z. Wu, W.Y. Guo, W.D. Xiao, et al., Dominant reaction pathway for methanol conversion to propene over high silicon H-ZSM-5, Chem. Eng. Sci. 66(2011) 4722-4732. [15] C.D. Chang, C.T. Chu, R.F. Socha, Methanol conversion to olefins over ZSM-5. II. Olefin distribution, J. Catal. 86(1984) 297-300. [16] M.M. Wu, W.W. Kaeding, Conversion of methanol to hydrocarbons:II. Reaction paths for olefin formation over H-ZSM-5 zeolite catalyst, J. Catal. 88(1984) 478-489. [17] W.W. Kaeding, S.A. Butter, Production of chemicals from methanol:I. Low molecular weight olefins, J. Catal. 61(1980) 155-164. [18] T.Y. Park, G.F. Froment, Kinetic modeling of the methanol to olefins process. 1. Model formulation, Ind. Eng. Chem. Res. 40(2001) 4172-4186. [19] C.D. Chang, A kinetic model for methanol conversion to hydrocarbons, Chem. Eng. Sci. 35(1980) 619-622. [20] R. Mihail, S. Straja, G. Maria, et al., Kinetic model for methanol conversion to olefins, Ind. Eng. Chem. Process. Des. Dev. 22(2002) 532-538. [21] H. Schoenfelder, J. Hinderer, J. Werther, et al., Methanol to olefins-prediction of the performance of a circulating fluidized-bed reactor on the basis of kinetic experiments in a fixed-bed reactor, Chem. Eng. Sci. 49(1994) 5377-5390. [22] S. Svelle, U. Olsbye, F. Joensen, et al., Conversion of methanol to alkenes over medium- and large-pore acidic zeolites:Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity, J. Phys. Chem. C 111(49) (2007) 17971-17984. [23] J.F. Haw, W. Song, D.M. Marcus, et al., The mechanism of methanol to hydrocarbon catalysis, ChemInform 36(2003) 317-326. [24] T.Y. Park, G.F. Froment, Analysis of fundamental reaction rates in the methanol-toolefins process on ZSM-5 as a basis for reactor design and operation, Ind. Eng. Chem. Res. 43(2004) 682-689. [25] R.L. Espinoza, Oligomerization vs. methylation of propene in the conversion of dimethyl ether (or methanol) to hydrocarbons, Ind. Eng. Chem. Process. Des. Dev. 23(1984) 449-452. [26] K.P. Möller, W. Böhringer, A.E. Schnitzler, et al., The use of a jet loop reactor to study the effect of crystal size and the co-feeding of olefins and water on the conversion of methanol over HZSM-5, Microporous Mesoporous Mater. 29(1999) 127-144. [27] Kissin, V. Yury, Chemical mechanisms of catalytic cracking over solid acidic catalysts:Alkanes and alkenes, Catal. Rev. 43(1-2) (2001) 85-146. [28] K.G. Wilshier, P. Smart, R. Western, et al., Oligomerization of propene over H-ZSM-5 zeolite, Appl. Catal. 31(1987) 339-359. [29] S.A. Tabak, F.J. Krambeck, W.E. Garwood, Conversion of propylene and butylene over ZSM-5 catalyst, AIChE J. 32(1986) 1526-1531. [30] P. Borges, R.R. Pinto, M.A.N.D.A. Lemos, et al., Light olefin transformation over ZSM-5 zeolites-A kinetic model for olefin consumption, Appl. Catal. A Gen. 324(2007) 20-29. [31] L. Ying, J. Zhu, Y. Cheng, et al., Kinetic modeling of C2-C7 olefins interconversion over ZSM-5 catalyst, J. Ind. Eng. Chem. 33(2015) 80-90. [32] M. Schneider, F. Schmidt, G. Burgfels, Process for preparing lower olefins, EP patent, 0448000, (1991). [33] W. Guo, W. Wu, L. Man, et al., Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process, Fuel Process. Technol. 108(2013) 133-138. [34] A. Corma, F. Ortega, Influence of adsorption parameters on catalytic cracking and catalyst decay, J. Catal. 233(2005) 257-265. |