[1] W.J. Koros, Evolving beyond the thermal age of separation processes:Membranes can lead the way, AIChE J. 50(10) (2004) 2326-2334.[2] D.L. Gin, R.D. Noble, Designing the next generation of chemical separation membranes, Science 332(6030) (2011) 674-676.[3] B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature 488(7411) (2012) 313-319.[4] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452(7185) (2008) 301-310.[5] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(1) (2008) 390-400.[6] S. Karan, Z. Jiang, A.G. Livingston, Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science 348(6241) (2015) 1347-1351.[7] G.P. Liu, W.Q. Jin, N.P. Xu, Two-dimensional-material membranes:A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55(2016) 2-16.[8] A.K. Geim, Graphene:Status and prospects, Science 324(5934) (2009) 1530-1534.[9] J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. Van Der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets, Nano Lett. 8(8) (2008) 2458-2462.[10] W. Yuan, J. Chen, G. Shi, Nanoporous graphene materials, Mater. Today 17(2) (2014) 77-85.[11] G. Liu, W. Jin, N. Xu, Graphene-based membranes, Chem. Soc. Rev. 44(15) (2015) 5016-5030.[12] C. Sun, B. Wen, B. Bai, Recent advances in nanoporous graphene membrane for gas separation and water purification, Sci. Bull. 60(21) (2015) 1807-1823.[13] D. An, L. Yang, T.J. Wang, B. Liu, Separation performance of graphene oxide membrane in aqueous solution, Ind. Eng. Chem. Res. 55(17) (2016) 4803-4810.[14] Q. Xu, H. Xu, J. Chen, Y. Lv, Dong C. Sreeprasad, T.S., Graphene and graphene oxide:Advanced membranes for gas separation and water purification, Inorg. Chem. Front. 2(5) (2015) 417-424.[15] M. Miculescu, V.K. Thakur, F. Miculescu, S.I. Voicu, Graphene-based polymer nanocomposite membranes:A review, Polym. Adv. Technol. 27(2016) 844-859.[16] P. Sun, K. Wang, H. Zhu, Recent developments in graphene-based membranes:Structure, mass-transport mechanism and potential applications, Adv. Mater. 28(2016) 2287-2310.[17] A. Alexiadis, S. Kassinos, Molecular simulation of water in carbon nanotubes, Chem. Rev. 108(12) (2008) 5014-5034.[18] M. Krueger, S. Berg, D.A. Stone, E. Strelcov, D.A. Dikin, J. Kim, L.J. Cote, J.X. Huang, A. Kolmakov, Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples, ACS Nano 5(12) (2011) 10047-10054.[19] C.J. Russo, J.A. Golovchenko, Atom-by-atom nucleation and growth of graphene nanopores, Proc. Natl. Acad. Sci. U. S. A. 109(16) (2012) 5953-5957.[20] D. Zhou, Y. Cui, P.W. Xiao, M.Y. Jiang, B.H. Han, A general and scalable synthesis approach to porous graphene, Nat. Commun. 5(2014) 4716.[21] R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Ion selectivity of graphene nanopores, Nat. Commun. 7(2016) 11408.[22] X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications, ACS Nano 5(11) (2011) 8739-8749.[23] Y. Yamada, K. Murota, R. Fujita, J. Kim, A. Watanabe, M. Nakamura, S. Sato, K. Hata, P. Ercius, J. Ciston, C.Y. Song, K. Kim, W. Regan, W. Gannett, A. Zettl, Subnanometer vacancy defects introduced on graphene by oxygen gas, J. Am. Chem. Soc. 136(6) (2014) 2232-2235.[24] Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Holey graphene frameworks for highly efficient capacitive energy storage, Nat. Commun. 5(2014) 4554.[25] K. Sint, B. Wang, P. Král, Selective ion passage through functionalized graphene nanopores, J. Am. Chem. Soc. 130(49) (2008) 16448-16449.[26] Z. He, J. Zhou, X. Lu, B. Corry, Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+, ACS Nano 7(11) (2013) 10148-10157.[27] S. Zhao, J. Xue, W. Kang, Ion selection of charge-modified large nanopores in a graphene sheet, J. Chem. Phys. 139(11) (2013) 114702.[28] S.C. O'Hern, M.S. Boutilier, J.C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, R. Karnik, Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes, Nano Lett. 14(3) (2014) 1234-1241.[29] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448(7152) (2007) 457-460.[30] L. Qiu, X. Zhang, W. Yang, Y. Wang, G.P. Simon, D. Li, Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration, Chem. Commun. 47(20) (2011) 5810-5812.[31] H.W. Kim, H.W. Yoon, S.M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, J.Y. Choi, H.B. Park, Selective gas transport through few-layered graphene and graphene oxide membranes, Science 342(6154) (2013) 91-95.[32] A. Akbari, P. Sheath, S.T. Martin, D.B. Shinde, M. Shaibani, P.C. Banerjee, R. Tkacz, D. Bhattacharyya, M. Majumder, Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide, Nat. Commun. 7(2016) 10891.[33] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1) (2010) 228-240.[34] N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, J. Sloan, Graphene oxide:Structural analysis and application as a highly transparent support for electron microscopy, ACS Nano 3(9) (2009) 2547-2556.[35] G. Eda, M. Chhowalla, Chemically derived graphene oxide:Towards large-area thinfilm electronics and optoelectronics, Adv. Mater. 22(22) (2010) 2392-2415.[36] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335(6067) (2012) 442-444.[37] A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering, J. Phys. Chem. B 110(45) (2006) 22328-22338.[38] N. Giovambattista, P.J. Rossky, P.G. Debenedetti, Phase transitions induced by nanoconfinement in liquid water, Phys. Rev. Lett. 102(5) (2009), 050603.[39] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(6172) (2014) 752-754.[40] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater. 23(29) (2013) 3693-3700.[41] L. Qiu, X. Zhang, W. Yang, Y. Wang, G.P. Simon, D. Li, Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration, Chem. Commun. 47(20) (2011) 5810-5812.[42] H. Liu, H. Wang, X. Zhang, Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification, Adv. Mater. 27(2) (2015) 249-254.[43] C.N. Yeh, K. Raidongia, J. Shao, Q.H. Yang, J. Huang, On the origin of the stability of graphene oxide membranes in water, Nat. Chem. 7(2) (2015) 166-170.[44] Y. Liang, H. Hilal, P. Langston, V. Starov, Interaction forces between colloidal particles in liquid:Theory and experiment, Adv. Colloid Interf. Sci. 134-135(2007) 151-166.[45] Y.H. Xi, J.Q. Hu, Z. Liu, R. Xie, X.J. Ju, W. Wang, L.Y. Chu, Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing, ACS Appl. Mater. Interfaces 8(24) (2016) 15557-15566.[46] S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, R.S. Ruoff, Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical crosslinking, ACS Nano 2(3) (2008) 572-578.[47] Z. An, O.C. Compton, K.W. Putz, L.C. Brinson, S.T. Nguyen, Bio-inspired borate crosslinking in ultra-stiff graphene oxide thin films, Adv. Mater. 23(33) (2011) 3842-3846.[48] Y. Gao, L.Q. Liu, S.Z. Zu, K. Peng, D. Zhou, B.H. Han, Z. Zhang, The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers, ACS Nano 5(3) (2011) 2134-2141.[49] S. Stankovich, D.A. Dikin, O.C. Compton, G.H.B. Dommett, R.S. Ruoff, S.T. Nguyen, Systematic post-assembly modification of graphene oxide paper with primary alkylamines, Chem. Mater. 22(14) (2010) 4153-4157.[50] M. Hu, B.X. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol. 47(8) (2013) 3715-3723.[51] Y. Tian, Y. Cao, Y. Wang, W. Yang, J. Feng, Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers, Adv. Mater. 25(21) (2013) 2980-2983.[52] Y. Cui, Q.Y. Cheng, H. Wu, Z. Wei, B.H. Han, Graphene oxide-based benzimidazolecrosslinked networks for high-performance supercapacitors, Nanoscale 5(18) (2013) 8367-8374.[53] W.S. Hung, C.H. Tsou, M. De Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26(9) (2014) 2983-2990.[54] S. Park, D.A. Dikin, S.T. Nguyen, R.S. Ruoff, Graphene oxide sheets chemically crosslinked by polyallylamine, J. Phys. Chem. C 113(36) (2009) 15801-15804.[55] K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, L.C. Brinson, High-nanofillercontent graphene oxide-polymer nanocomposites via vacuum-assisted selfassembly, Adv. Funct. Mater. 20(19) (2010) 3322-3329.[56] B. Mi, Graphene oxide membranes for ionic and molecular sieving, Science 343(6172) (2014) 740-742.[57] K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, W. Jin, A graphene oxide membrane with highly selective molecular separation of aqueous organic solution, Angew. Chem. Int. Ed. 53(27) (2014) 6929-6932.[58] Anonymous, Graphene opens up to new applications, Nat. Nanotechnol. 10(5) (2015) 381.[59] K. Sint, B. Wang, P. Král, Selective ion passage through functionalized graphene nanopores, J. Am. Chem. Soc. 130(49) (2008) 16448-16449.[60] D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12(7) (2012) 3602-3608.[61] D. Konatham, J. Yu, T.A. Ho, A. Striolo, Simulation insights for graphene-based water desalination membranes, Langmuir 29(38) (2013) 11884-11897.[62] D. Cohen-Tanugi, R.K. McGovern, S.H. Dave, J.H. Lienhard, J.C. Grossman, Quantifying the potential of ultra-permeable membranes for water desalination, Energy Environ. Sci. 7(3) (2014) 1134-1141.[63] D. Cohen-Tanugi, J.C. Grossman, Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination, J. Chem. Phys. 141(7) (2014), 074704.[64] S.C. O'Hern, M.S. Boutilier, J.C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, R. Karnik, Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes, Nano Lett. 14(3) (2014) 1234-1241.[65] S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nat. Nanotechnol. 10(5) (2015) 459-464.[66] J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes, Nat. Rev. Mater. 1(5) (2016) 16018.[67] R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Ion selectivity of graphene nanopores, Nat. Commun. 7(2016) 11408.[68] Z. He, J. Zhou, X. Lu, B. Corry, Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+, ACS Nano 7(11) (2013) 10148-10157.[69] Y. Kang, Z. Zhang, H. Shi, J. Zhang, L. Liang, Q. Wang, H. Agren, Y. Tu, Na+ and K+ ion selectivity by size-controlled biomimetic graphene nanopores, Nanoscale 6(18) (2014) 10666-10672.[70] J. Guo, J. Lee, C.I. Contescu, N.C. Gallego, S.T. Pantelides, S.J. Pennycook, B.A. Moyer, M.F. Chisholm, Crown ethers in graphene, Nat. Commun. 5(2014) 5389.[71] Z. Jia, W. Shi, Tailoring permeation channels of graphene oxide membranes for precise ion separation, Carbon 101(2016) 290.[72] Z. Li, Y. Liu, Y. Zhao, X. Zhang, L. Qian, L. Tian, J. Bai, W. Qi, H. Yao, B. Gao, J. Liu, W. Wu, H. Qiu, Selective separation of metal ions via monolayer nanoporous graphene with carboxyl groups, Anal. Chem. 88(2016) 10002.[73] M.Y. Lim, Y.S. Choi, J. Kim, K. Kim, H. Shin, J.J. Kim, D.M. Shin, J.C. Lee, Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine, J. Membr. Sci. 521(2017) 1.[74] P. Sun, H. Liu, K. Wang, M. Zhong, D. Wu, H. Zhu, Selective ion transport through functionalized graphene membranes based on delicate ion-graphene interactions, J. Phys. Chem. C 118(2014) 19396. |