[1] H. Lu, E.P. Reddy, P.G. Smirniotis, Calcium oxide based sorbents for capture of carbon dioxide at high temperatures, Ind. Eng. Chem. Res. 45(2006) 3944-3949. [2] M.V. Iyer, H. Gupta, B.B. Sakadjian, L.-S. Fan, Multicyclic study on the simultaneous carbonation and sulfation of high-reactivity CaO, Ind. Eng. Chem. Res. 43(2004) 3939-3949. [3] B.T. Zhang, M. Fan, A.E. Bland, CO2 separation by a new solid K-Fe sorbent, Energy Fuel 25(2011) 1919-1925. [4] B. Dutcher, M. Fan, B. Leonard, Use of multifunctional nanoporous TiO(OH)2 for catalytic NaHCO3 decomposition-eventually for Na2CO3/NaHCO3 based CO2 separation technology, Sep. Purif. Technol. 80(2011) 364-374. [5] B. Dutcher, M. Fan, B. Leonard, M.D. Dyar, J. Tang, E.A. Speicher, P. Liu, Y. Zhang, Use of nanoporous FeOOH as a catalytic support for NaHCO3 decomposition aimed at reduction of energy requirement of Na2CO3/NaHCO3 based CO2 separation technology, J. Phys. Chem. C 115(2011) 15532-15544. [6] A. Tuwati, M. Fan, A.G. Russell, J. Wang, H.F.M. Dacosta, New CO2 sorbent synthesized with nanoporous TiO(OH)2 and K2CO3, Energy Fuel 27(2013) 7628-7636. [7] D. Karami, N. Mahinpey, Highly active CaO-based sorbents for CO2 capture using the precipitation method, preparation and characterization of the sorbent powder, Ind. Eng. Chem. Res. 51(2012) 4567-4572. [8] B.W. Wang, X.Y. Song, Z.H. Wang, C.G. Zheng, Preparation and application of the sol——gel combustion synthesis-made CaO/CaZrO3 sorbent for cyclic CO2 capture through the severe calcination condition, Chin. J. Chem. Eng. 22(2014) 991-999. [9] D. Alvarez, M. Pena, A.G. Borrego, Behavior of different calcium-based sorbents in a calcination/carbonation cycle for CO2 capture, Energy Fuel 21(2007) 1534-1542. [10] J. Blamey, M. Zhao, V. Manovic, E.J. Anthony, D.R. Dugwell, P.S. Fennell, A shrinking core model for steam hydration of CaO-based sorbents cycled for CO2 capture, Chem. Eng. J. 291(2016) 298-305. [11] H. Dieter, A.R. Bidwe, G. Varela-Duelli, A. Charitos, C. Hawthorne, G. Scheffknecht, Development of the calcium looping CO2 capture technology from lab to pilot scale at IFK, University of Stuttgart, Fuel 127(2014) 23-27. [12] J. Ströhle, M. Junk, J. Kremer, A. Galloy, B. Epple, Carbonate looping experiments in a 1 MWth pilot plant and model validation, Fuel 127(2014) 13-22. [13] A. Sánchez-Biezma, J. Paniagua, L. Diaz, M. Lorenzo, J. Alvarez, D. Martínez, B. Arias, M.E. Diego, J.C. Abanades, Testing postcombustion CO2 capture with CaO in a 1.7 MWt pilot facility, Energy Procedia 37(2013) 1-8. [14] M.J. Al-Jeboori, M. Nguyen, C. Dean, P.S. Fennell, Improvement of limestone-based CO2 sorbents for Ca looping by HBr and other mineral acids, Ind. Eng. Chem. Res. 52(2013) 1426-1433. [15] R.Y. Sun, Y.J. Li, S.M. Wu, C.T. Liu, H.L. Liu, C.M. Lu, Enhancement of CO2 capture capacity by modifying limestone with propionic acid, Powder Technol. 233(2013) 8-14. [16] Z.S. Li, N.S. Cai, Y.Y. Huang, Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new Ca-based CO2 sorbent, Ind. Eng. Chem. Res. 45(2006) 1911-1917. [17] R. Wu, S.F. Wu, Performance of nano-CaCO3 coated with SiO2 on CO2 adsorption at high temperature, J. Chem. Ind. Eng. (China) 57(7) (2006) 1722-1726. (in Chinese) [18] R.Y. Sun, Y.J. Li, H.L. Liu, S.M. Wu, C.M. Lu, CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle, Appl. Energy 89(2012) 368-373. [19] L. Vieille, A. Govin, P. Grosseau, Improvements of calcium oxide based sorbents for multiple CO2 capture cycles, Powder Technol. 228(2012) 319-323. [20] T. He, B. Cao, J.Y. Hu, J.C. He, X. Mu, L. Xu, Y. Liu, X.X. Ma, Research on calcium oxidebased sorbents for adsorption of CO2 at high temperature, J. Chem. Ind. Eng. (China) 35(2007) 8-11. (in Chinese) [21] X.T. Liu, X.X. Ma, Modified calcium-based sorbent for CO2 capture at high temperature, The 12th Japan-China Symposium on Coal and C1 Chemistry, Fukuoka, Japan, 2013. [22] X.T. Liu, X.X. Ma, J.F. Shi, The effect of doping CeO2 for CO2 capture of calcium-based sorbent at high temperature, 30th Annual International Pittsburgh Coal Conference, Beijing, China, 2013. [23] X.T. Liu, X.X. Ma, S.S. Xu, C. Li, D. Lu, Modified calcium-based sorbent doped with CeO2 for CO2 capture at high temperature, The 7th International Conference on Separation Science and Technology, Chengdu, China, 2013. [24] C. Ma, The Study of Modified Calcium-base Sorbent for CO2 at High Temperature, M.S. Thesis, Northwest Univ., China, 2010. [25] S.P. Wang, H. Shen, S.S. Fan, Y.J. Zhao, X.B. Ma, J.L. Gong, CaO-based meshed hollow spheres for CO2 capture, Chem. Eng. Sci. 135(2015) 532-539. [26] S.P. Wang, H. Shen, S.S. Fan, Y.J. Zhao, X.B. Ma, J.L. Gong, Enhanced CO2 adsorption capacity and stability using CaO-based adsorbents treated by hydration, AIChE J. 59(2013) 3586-3593. [27] S.F. Cui, W.S. Yang, Z.N. Qian, Research thermal decomposition of lanthanum hydroxide by thermogravimetry, Chem. J. Chin. Univ. 8(3) (1987) 271-272. (in Chinese) [28] C. Luo, Y. Zheng, N. Ding, Q.L. Wu, G. Bian, C.G. Zheng, Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture, Ind. Eng. Chem. Res. 49(2010) 11778-11784. [29] M. Broda, A.M. Kierzkowska, C.R. Müller, Influence of the calcination and carbonation conditions on the CO2 uptake of synthetic Ca-based CO2 sorbents, Environ. Sci. Technol. 46(2012) 10849-10856. [30] H. Lu, A. Khan, S.E. Pratsinis, P.G. Smirniotis, Flame-made durable doped-CaO nanosorbents for CO2 capture, Energy Fuel 23(2009) 1093-1100. [31] P.Q. Lan, S.F. Wu, Mechanism for self-reactivation of nano-CaO-based CO2 sorbent in calcium looping, Fuel 143(2015) 9-15. [32] V. Manovic, E.J. Anthony, Thermal activation of CaO-based sorbent and selfreactivation during CO2 capture looping cycles, Environ. Sci. Technol. 42(2008) 4170-4174. [33] S.P. Wang, S.L. Yan, X.B. Ma, J.L. Gong, Recent advances in capture of carbon dioxide using alkali-metal-based oxides, Energy Environ. Sci. 4(2011) 3805-3819. [34] G.W. Wu, C.X. Zhang, S.R. Li, Z.Q. Huang, S.L. Yan, S.P. Wang, X.B. Ma, J.L. Gong, Sorption enhanced steam reforming of ethanol on Ni-CaO-Al2O3 multifunctional catalysts derived from hydrotalcite-like compounds, Energy Environ. Sci. 5(2012) 8942-8949. [35] D. Alvarez, J.C. Abanades, Determination of the critical product layer thickness in the reaction of CaO with CO2, Ind. Eng. Chem. Res. 44(2005) 5608-5615. [36] Z.S. Li, F. Fang, X.Y. Tang, N.S. Cai, Effect of temperature on the carbonation reaction of CaO with CO2, Energy Fuel 26(2012) 2473-2482. [37] Z.S. Li, N.S. Cai, Y.Y. Huang, H.J. Han, Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent, Energy Fuel 19(2005) 1447-1452. [38] Q. Shi, S.F. Wu, M.Z. Jiang, Q.H. Li, Reactive sorption-decomposition kinetics of nano Ca-based CO2 sorbents, CIESC J. 60(3) (2009) 641-648. (in Chinese) [39] A. Akgsornpeak, T. Witoon, T. Mungcharoen, J. Limtrakul, Development of synthetic CaO sorbents via CTAB-assisted sol-gel method for CO2 capture at high temperature, Chem. Eng. J. 237(2014) 189-198. [40] L.Y. Li, D.L. King, Z.M. Nie, C. Howard, Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture, Ind. Eng. Chem. Res. 48(2009) 10604-10613. |