[1] M.J. Veraa, A.T. Bell, Effect of alkali metal catalysts on gasification of coal char, Fuel 57(1978) 194-200. [2] S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52(1984) 255-268. [3] W.G. Hoover, Canonical dynamics:Equilibrium phase-space distributions, Phys. Rev. A 31(1985) 1695-1697. [4] T. Takarada, Y. Tamai, A. Tomita, Reactivities of 34 coals under steam gasification, Fuel 64(1985) 1438-1442. [5] Z.L. Liu, H.H. Zhu, Steam gasification of coal char using alkali and alkaline-earth metal catalysts, Fuel 65(1986) 1334-1338. [6] T. Takarada, Y. Tamai, A. Tomita, Effectiveness of K2CO3 and Ni as catalysts in steam gasification, Fuel 65(1986) 679-683. [7] L.Q. Wang, Y.H. Dun, X.N. Xiang, Z.J. Jiao, T.Q. Zhang, Thermodynamics research on hydrogen production from biomass and coal co-gasification with catalyst, Int. J. Hydrog. Energy 36(2011) 11676-11683. [8] A.A. Vostrikov, S.A. Psarov, D.Y. Dubov, O.N. Fedyaeva, M.Y. Sokol, Kinetics of coal conversion in supercritical water, Energy Fuel 21(2007) 2840-2845. [9] L. Han, R. Zhang, J. Bi, L. Cheng, Pyrolysis of coal-tar asphaltene in supercritical water, J. Anal. Appl. Pyrolysis 91(2011) 281-287. [10] S. Wang, Y. Guo, L. Wang, Y. Wang, D. Xu, H. Ma, Supercritical water oxidation of coal:Investigation of operating parameters' effects, reaction kinetics and mechanism, Fuel Process. Technol. 92(2011) 291-297. [11] L. Guo, H. Jin, Boiling coal in water:Hydrogen production and power generation system with zero net CO2 emission based on coal and supercritical water gasification, Int. J. Hydrog. Energy 38(2013) 12953-12967. [12] J. Zhang, X. Weng, Y. Han, W. Li, Z. Gan, J. Gu, Effect of supercritical water on the stability and activity of alkaline carbonate catalysts in coal gasification, J. Energy Chem. 22(2013) 459-467. [13] P.A. Marrone, G.T. Hong, Corrosion control methods in supercritical water oxidation and gasification processes, J. Supercrit. Fluids 51(2009) 83-103. [14] M.M. Aslam Bhutta, N. Hayat, M.H. Bashir, A.R. Khan, K.N. Ahmad, S. Khan, CFD applications in various heat exchangers design:A review, Appl. Therm. Eng. 32(2012) 1-12. [15] M. Brennan, K. Bremhorst, CFD modeling of alumina slurry heat exchanger headers:(ii) Parametric studies, Seventh International Conference on CFD in the Minerals and Process IndustriesCSIRO 2009, pp. 1-6. [16] M. Kim, Y. Lee, B. Kim, D. Lee, W. Song, CFD modeling of shell-and-tube heat exchanger header for uniform distribution among tubes, Korean J. Chem. Eng. 26(2009) 359-363. [17] K. Bremhorst, M. Brennan, CFD modelling of alumina slurry heat exchanger headers:(i) Comparison of CFD approaches, Seventh Int. Conf. on CFD in the Minerals and Process IndustriesCSIRO, Melbourne, Australia 2009, pp. 9-11. [18] H.M. Badr, M.A. Habib, R. Ben-Mansour, S.A.M. Said, S.S. Al-Anizi, Erosion in the tube entrance region of an air-cooled heat exchanger, Int. J. Impact Eng. 32(2006) 1440-1463. [19] J. Ding, D. Gidaspow, A bubbling fluidization model using kinetic theory of granular flow, AIChE J 36(1990) 523-538. [20] V. Jiradilok, D. Gidaspow, S. Damronglerd, W.J. Koves, R. Mostofi, Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser, Chem. Eng. Sci. 61(2006) 5544-5559. [21] Y. Lu, L. Guo, C. Ji, X. Zhang, X. Hao, Q. Yan, Hydrogen production by biomass gasification in supercritical water:A parametric study, Int. J. Hydrog. Energy 31(2006) 822-831. [22] D. Gidaspow, Multiphase Flow and Fluidization:Continuum and Kinetic Theory Descriptions, Academic Press, San Diego, CA, (1994) 467. [23] N. Yang, W. Wang, W. Ge, L. Wang, J. Li, Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach, Ind. Eng. Chem. Res. 43(2004) 5548-5561. [24] W. Wagner, A. Kruse, H.-J. Kurtzschmar, Properties of Water and Steam:The Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties:Tables Based on These Equations, Springer-Verlag, Berlin, 1998. [25] J. Serin, J. Mercadier, F. Marias, P. Cezac, F. Cansell, Use of CFD for the design of injectors for supercritical water oxidation, Proceedings of the 10th European Meeting on Supercritical Fluids:Reactions, Materials and Natural Products Processing, Colmar, France, 2005. [26] T. Yoshida, Y. Matsumura, Reactor development for supercritical water gasification of 4.9 wt% glucose solution at 673 K by using computational fluid dynamics, Ind. Eng. Chem. Res. 48(2009) 8381-8386. [27] M.L. de Bertodano, Turbulent Bubbly Flow in a Triangular Duct, Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy New York, 1991. [28] C. Chen, P. Wood, A turbulence closure model for dilute gas-particle flows, Can. J. Chem. Eng. 63(1985) 349-360. [29] C. Narayanan, C. Frouzakis, K. Boulouchos, K. Príkopský, B. Wellig, P. Rudolf von Rohr, Numerical modelling of a supercritical water oxidation reactor containing a hydrothermal flame, J. Supercrit. Fluids 46(2008) 149-155. [30] X. Zhou, J. Gao, C. Xu, X. Lan, Effect of wall boundary condition on CFD simulation of CFB risers, Particuology 11(2013) 556-565. [31] D. Elvery, K. Bremhorst, Erosion-corrosion due to inclined flow into heat exchanger tubes-investigation of flow field, Proceedings of the ASME Fluids Engineering Division Summer Meeting, San Diego, California, USA July, 1996, pp. 7-11. |