[1] F.Q. Zhang, G.Y. Bian, China's ethylene industry, "eleventh five-year" retrospect and prospect, Pet. Technol. Forum 30(2) (2011) 13-17. (in Chinese) [2] V. Jain, I.E. Grossmann, Cyclic scheduling of continuous parallel-process units with decaying performance, AIChE J. 44(7) (1998) 1623-1636. [3] E.P. Schulz, J.A. Bandoni, M.S. Diaz, Optimal shutdown policy for maintenance of cracking furnaces in ethylene plants, Ind. Eng. Chem. Res. 45(8) (2006) 2748-2757. [4] H. Lim, J. Choi, M. Realff, Development of optimal decoking scheduling strategies for an industrial naphtha cracking furnace system, Ind. Eng. Chem. Res. 45(16) (2006) 5738-5747. [5] H. Lim, J. Choi, M. Realff, Proactive scheduling strategy applied to decoking operations of an industrial naphtha cracking furnace system, Ind. Eng. Chem. Res. 48(6) (2009) 3024-3032. [6] C. Liu, J. Zhang, Q. Xu, Cyclic scheduling for best profitability of industrial cracking furnace system, Comput. Chem. Eng. 34(4) (2010) 544-554. [7] C. Zhao, C. Liu, Q. Xu, Cyclic scheduling for ethylene cracking furnace system with consideration of secondary ethane cracking, Ind. Eng. Chem. Res. 49(12) (2010) 5765-5774. [8] C. Zhao, C. Liu, Q. Xu, Dynamic scheduling for ethylene cracking furnace system, Ind. Eng. Chem. Res. 50(21) (2011) 12026-12040. [9] B.P. Shang, W.L. Du, Y.K. Jin, F. Qian, Modeling and optimization of scheduling for ethylene cracking furnace systems scheduling with consideration of changing feedstock, CIESC J. 64(12) (2013) 4312-4312. (in Chinese) [10] H.D. Jian, Modeling and Optimization of Scheduling for Cracking Furnace System (M.S. Thesis) ECUST, Shanghai, 2014(in Chinese). [11] Y. Jincai, Q. Bo, C. Huanong, Multiobjective optimization of phosgene absorber using NSGA-Ⅱ, Comput. Appl. Chem. 25(2) (2008) 181-184. [12] L. Shi, P.J. Yao, Multi-objective evolutionary algorithms for MILP and MINLP in process synthesis, Chin. J. Chem. Eng. 9(2) (2001) 173-178. [13] R. Hassan, B. Cohanim, W.O. De, A comparison of particle swarm optimization and the genetic algorithm, Proceedings of the 1st AIAA Multidisciplinary Design Optimization Specialist Conference 2005, pp. 18-21. [14] K. Deb, A. Pratap, S. Agarwal, A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ, IEEE Trans. Evol. Comput. 6(2) (2002) 182-197. [15] D.K. He, F.L. Wang, Z.Z. Mao, Study on application of genetic algorithm in discrete variables optimization, J. Syst. Simul. 18(5) (2006) 1154-1156. [16] S. Rajeev, C.S. Krishnamoorthy, Discrete optimization of structures using genetic algorithms, J. Struct. Eng. 118(5) (1992) 1233-1250. [17] K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space, Complex Syst. 9(2) (1995) 115-148. [18] G. Syswerda, Uniform crossover in genetic algorithms, International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., San Mateo, CA 1989, pp. 2-9. [19] T.I. Dimkou, K.P. Papalexandri, A parametric optimization approach for multiobjective engineering problemsinvolvingdiscretedecisions, Comput. Chem. Eng.22(22)(1998) 951-954. [20] W. Tong, S. Chowdhury, A. Messac, A multi-objective mixed-discrete particle swarm optimization with multi-domain diversity preservation, Struct. Multidiscip. Optim. 53(3) (2015) 1-18. |