[1] K. Fujiwara, M. Kano, S. Hasebe, Development of correlation-based pattern recognition algorithm and adaptive soft-sensor design, Control. Eng. Pract. 20(2012) 371-378. [2] S.Q. Xu, X.G. Liu, Melt index prediction by fuzzy functions with dynamic fuzzy neural networks, Neurocomputing 142(22) (2014) 191-198. [3] J. Yu, A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses, Comput. Chem. Eng. 41(11) (2012) 134-144. [4] Y.G. Li, W.H. Gui, C.H. Yang, Y.F. Xie, Soft sensor and expert control for blending and digestion process in alumina metallurgical industry, J. Process Control 23(2013) 1012-1021. [5] M. Vishal, H. Juergen, Model predictive control of reactive distillation for benzene hydrogenation, Control. Eng. Pract. 52(2016) 103-113. [6] L. Chang, X.G. Liu, M.A. Henson, Nonlinear model predictive control of fed-batch fermentations using dynamic flux balance models, J. Process Control 42(2016) 137-149. [7] D.H. Xavier, H. Laurent, R. Jorg, C. Bertrand, Model predictive control for discrete event systems with partial synchronization, Automatica 70(2016) 9-13. [8] J.H. Lee, Model predictive control:Review of the three decades of development, Int. J. Control. Autom. Syst. 9(3) (2011) 415-424. [9] P. Matej, Z. Eva, R. Rush, C. Sergej, S. Michael, Bridging the gap between the linear and nonlinear predictive control:Adaptations for efficient building climate control, Control. Eng. Pract. 53(2016) 124-138. [10] S.H. Yang, X.Z. Wang, C. Mcgreavy, Q.H. Chen, Soft sensor based predictive control of industrial fluid catalytic cracking processes, Trans IChemE 76(1998) 499-508. [11] J. Kortela, S.L.J. Jounela, Fuel-quality soft sensor using the dynamic superheater model for control strategy improvement of the BioPower 5 CHP plant, Electr. Power Enery Syst. 42(1) (2012) 189-200. [12] Y.G. Xi, H.Y. Gu, Feasibility analysis and soft constraints adjustment of CMMO, Acta Automat. Sin. 24(6) (1998) 727-732. [13] X.L. Zhang, S.B. Wang, X.L. Luo, Feasibility analysis and constraints adjustment of constrained optimal control in chemical processes, CIESC J. 62(9) (2011) 2546-2554(in Chinese). [14] X.L. Zhang, X.L. Luo, S.B. Wang, Feasibility analysis and on-line adjustment of constraints in process predictive control, CIESC J. 63(5) (2012) 1459-1467(in Chinese). [15] X.L. Luo, X.L. Zhou, S.B. Wang, Analysis of constrained optimal control with related constraints of input variables, Acta Automat. Sin. 39(5) (2013) 679-689. [16] W.D. Ni, S.D. Brown, R.L. Man, A localized adaptive soft sensor for dynamic system modeling, Chem. Eng. Sci. 111(8) (2014) 350-363. [17] W.M. Shao, X.M. Tian, Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models, Chem. Eng. Res. Des. 95(2015) 113-132. [18] C. Shang, X.L. Huang, J.A.K. Suykens, D.X. Huang, Enhancing dynamic soft sensors based on DPLS:A temporal smoothness regularization approach, J. Process Control 28(2015) 17-26. |