[1] B.E. Bowers, R.F. Brownlee, P.J. Schrenkel, Development of a downhole oil/water separation and reinjection system for offshore application, SPE J. 15(2000) 115-122.[2] S.Y. Shi, J.Y. Xu, Flow field of continuous phase in a vane-type pipe oil-water separator, Exp. Thermal Fluid Sci. 60(2015) 208-212.[3] B. Wang, K.W. Chu, A.B. Yu, Numerical study of particle-fluid flow in a hydrocyclone, Ind. Eng. Chem. Res. 46(2007) 4695-4705.[4] H.L. Wang, Y.H. Zhang, J.G. Wang, H.L. Liu, Cyclonic separation technology:Researches and developments, Chin. J. Chem. Eng. 20(2012) 212-219.[5] R.A. Johnson, W.E. Gibson, D.R. Libby, Performance of liquid-liquid cyclones, Ind. Eng. Chem. Fundam. 15(1976) 110-115.[6] A. Belaidi, M.T. Thew, S.J. Munaweera, Hydrocyclone performance with complex oil-water emulsions in the feed, Can. J. Chem. Eng. 81(2010) 1159-1170.[7] Z.S. Bai, H.L. Wang, S.T. Tu, Oil-water separation using hydrocyclones enhanced by air bubbles, Chem. Eng. Res. Des. 89(2011) 55-59.[8] M. Nascimento, I. Bicalho, J. Mognon, C. Ataide, C. Duarte, Performance of a new geometry of deoiling hydrocyclones:Experiments and numerical simulations, Chem. Eng. Technol. 36(2013) 98-108.[9] J.G. Wang, Z.S. Bai, Q. Yang, Y. Fan, H.L. Wang, Investigation of the simultaneous volumetric 3-component flow field inside a hydrocyclone, Sep. Purif. Technol. 163(2016) 120-127.[10] Y.F. Chang, A.C. Hoffmann, A Lagrangian study of liquid flow in a reverse-flow hydrocyclone using positron emission particle tracking, Exp. Fluids 56(2015) 1-14.[11] L. Wang, J. Feng, X. Gao, X. Peng, Investigation on the oil-gas separation efficiency considering oil droplets breakup and collision in a swirling flow, Chem. Eng. Res. Des. 117(2017) 394-400.[12] P. Qian, J. Ma, Y. Liu, X.J. Yang, Y.H. Zhang, H.L. Wang, Concentration distribution of droplets in a liquid-liquid hydrocyclone and its application, Chem. Eng. Technol. 39(2016) 953-959.[13] S. Amini, D. Mowla, M. Golkar, F. Esmaeilzadeh, Mathematical modelling of a hydrocyclone for the down-hole oil-water separation (DOWS), Chem. Eng. Res. Des. 90(2012) 2186-2195.[14] Y. Zhang, M.H. Jiang, Numerical simulation of multi-grade separators for multiphase fluid media down hole in offshore oilfield, International Conference on Ocean, Offshore and Arctic Engineering, Shanghai, China, 2010.[15] A.D. Rocha, A.C. Bannwart, M.M. Ganzarolli, Numerical and experimental study of an axially induced swirling pipe flow, Int. J. Heat Fluid Flow 53(2015) 81-90.[16] Z.B. Wang, Y. Ma, Y.H. Jin, Simulation and experiment of flow field in axial-flow hydrocyclone, Chem. Eng. Res. Des. 89(2011) 603-610.[17] S.Y. Shi, J.Y. Xu, H.Q. Sun, J. Zhang, D.H. Li, Y.X. Wu, Experimental study of a vanetype pipe separator for oil-water separation, Chem. Eng. Res. Des. 90(2012) 1652-1659.[18] M. Dirkzwager, A new axial cyclone design for fluid-fluid separation, PhD Thesis, Delft University of Technology, Delft, 1996.[19] S. Murphy, R. Delfos, M.J.B.M. Pourquie, Z. Olujic, P.J. Jansens, F.T.M. Nieuwstadt, Prediction of strongly swirling flow within an axial hydrocyclone using two commercial CFD codes, Chem. Eng. Sci. 62(2007) 1619-1635.[20] L. van Campen, R.F. Mudde, J. Slot, H. Hoeijmakers, A numerical and experimental survey of a liquid-liquid axial cyclone, Int. J. Chem. React. Eng. 10(2012) 1205-1224.[21] Y. Ma, Z.B. Wang, Y.H. Jin, Droplet coalescence and breakup and its influence factors in vane-guided hydrocyclone, CIESC J. 62(2011) 420-426(in Chinese).[22] L.J.A.M. Van Campen, Bulk dynamics of droplets in liquid-liquid axial cyclones, PhD Thesis, Delft University of Technology, Delft, 2014.[23] Y. Zhang, Y. Wang, L.X. Zhao, F. Li, F.S. Wang, G.X. Zheng, Design of hydrocyclone with axial inlet and its performance used in wellbore, International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, USA, 2014.[24] S. Huang, Numerical simulation of oil-water hydrocyclone using Reynolds-stress model for Eulerian multiphase flows, Can. J. Chem. Eng. 83(2005) 829-834.[25] T. Husveg, O. Rambeau, T. Drengstig, T. Bilstad, Performance of a deoiling hydrocyclone during variable flow rates, Miner. Eng. 20(2007) 368-379.[26] N.Y. Zhou, Y.X. Gao, W. An, M. Yang, Investigation of velocity field and oil distribution in an oil-water hydrocyclone using a particle dynamics analyzer, Chem. Eng. J. 157(2010) 73-79.[27] R. Maddahian, M. Asadi, B. Farhanieh, Numerical investigation of the velocity field and separation efficiency of deoiling hydrocyclones, Pet. Sci. 9(2012) 511-520.[28] S. Noroozi, S.H. Hashemabadi, CFD simulation of inlet design effect on deoiling hydrocyclone separation efficiency, Chem. Eng. Technol. 32(2009) 1885-1893.[29] S. Noroozi, S.H. Hashemabadi, CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency, Chem. Eng. Res. Des. 89(2011) 968-977.[30] N. Kharoua, L. Khezzar, Z. Nemouchi, Hydrocyclones for de-oiling applications-a review, Pet. Sci. Technol. 28(2010) 738-755.[31] M. Saidi, R. Maddahian, B. Farhanieh, Numerical investigation of cone angle effect on the flow field and separation efficiency of deoiling hydrocyclones, Heat Mass Transf. 49(2013) 247-260.[32] M. Saidi, R. Maddahian, B. Farhanieh, H. Afshin, Modeling of flow field and separation efficiency of a deoiling hydrocyclone using large eddy simulation, Int. J. Miner. Process. 112(2012) 84-93.[33] S. Amini, D. Mowla, M. Golkar, Developing a new approach for evaluating a de-oiling hydrocyclone efficiency, Desalination 285(2012) 131-137.[34] S. Schutz, G. Gorbach, M. Piesche, Modeling fluid behavior and droplet interactions during liquid-liquid separation in hydrocyclones, Chem. Eng. Sci. 64(2009) 3935-3952.[35] S. Noroozi, S.H. Hashemabadi, A. Chamkha, Numerical analysis of drops coalescence and breakage effects on de-oiling hydrocyclone performance, Sep. Sci. Technol. 48(2013) 991-1002.[36] C. Banerjee, K. Chaudhury, A.K. Majumder, S. Chakraborty, Swirling flow hydrodynamics in hydrocyclone, Ind. Eng. Chem. Res. 54(2015) 522-528.[37] C.J. Li, Q. Huang, Rheology-based computational fluid dynamics modeling for deoiling Hydrocyclone efficiency, Chem. Eng. Technol. 39(2016) 899-908.[38] A.M. Jawarneh, G.H. Vatistas, A.M. Jawarneh, G.H. Vatistas, Reynolds stress model in the prediction of confined turbulent swirling flows, J. Fluids Eng. 128(2006) 1377-1382.[39] M. Ghadirian, R.E. Hayes, J. Mmbaga, A. Afacan, Z. Xu, On the simulation of hydrocyclones using CFD, Can. J. Chem. Eng. 91(2013) 950-958.[40] J.A. Delgadillo, R.K. Rajamani, Large-Eddy simulation (LES) of large Hydrocyclones, Part. Sci. Technol. 25(2007) 227-245.[41] R. Delfos, S. Murphy, D. Stanbridge, Z. Olujic, P.J. Jansens, A design tool for optimising axial liquid-liquid hydrocyclones, Miner. Eng. 17(2004) 721-731.[42] L.G.M. Vieira, B.C. Silverio, J.J.R. Damasceno, M.A.S. Barrozo, Performance of hydrocyclones with different geometries, Can. J. Chem. Eng. 89(2011) 655-662. |