[1] N. Mac Dowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C.S. Adjiman, C.K. Williams, N. Shah, P. Fennell, An overview of CO2 capture technologies, Energy Environ. Sci. 3(2010) 1645-1669.[2] A. Hussain, M.B. Hagg, A feasibility study of CO2 capture from flue gas by a facilitated transport membrane, J. Membr. Sci. 359(2010) 140-148.[3] R. Mahajan, W.J. Koros, Factors controlling successful formation of mixed-matrix gas separation materials, Ind. Eng. Chem. Res. 39(2000) 2692-2696.[4] M. Rezakazemi, A.E. Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs):an overview on current status and future directions, Prog. Polym. Sci. 39(2014) 817-861.[5] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62(1991) 165-185.[6] S. Kim, L. Chen, J.K. Johnson, E. Marand, Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation:theory and experiment, J. Membr. Sci. 294(2007) 147-158.[7] J. Ahn, W.-J. Chung, I. Pinnau, M.D. Guiver, Polysulfone/silica nanoparticle mixedmatrix membranes for gas separation, J. Membr. Sci. 314(2008) 123-133.[8] B. Harold, T. Jeazet, C. Staudt, C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Trans. 41(2012) 14003-14027.[9] B.D. Reid, A. Ruiz-Trevino, I.H. Musselman, K.J. Balkus, J.P. Ferraris, Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41, Chem. Mater. 13(2001) 2366-2373.[10] A. Car, C. Stropnik, K.-V. Peinemann, Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation, Desalination 200(2006) 424.[11] J. Liu, Y. Wang, A.I. Benin, P. Jakubczak, R.R. Willis, M.D. Le Van, CO2/H2O adsorption equilibrium and rates on metal-organic frameworks:HKUST-1 and Ni/DOBDC, Langmuir 26(2010) 1430-14307.[12] B. Zornoza, S. Irusta, C. Tellez, J. Coronas, Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation, Langmuir 25(2009) 5903-5909.[13] T.T.N. Nhung, H. Furukawa, F. Gandara, H.T. Nguyen, K.E. Cordova, O.M. Yaghi, Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks, Angew. Chem. 126(2014) 10821-10824.[14] A.C. Kizzie, A.G. Wong-Foy, A.J. Matzger, Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture, Langmuir 27(2011) 6368-6373.[15] J. Liu, J. Tian, P.K. Thallapally, B.P. Mc Grail, Selective CO2 capture from flue gas using metal organic frameworks-a fixed bed study, J. Phys. Chem. C 116(2012) 9575-9581.[16] Y. Wang, Y. Zhou, C. Liu, L. Zhou, Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water, Colloids Surf. A Physicochem. Eng. Asp. 322(2008) 14-18.[17] J.U. Wieneke, C. Staudt, Thermal stability of 6FDA-(co-)polyimides containing carboxylic acid groups, Polym. Degrad. Stab. 95(2010) 684-693.[18] M. Sarfraz, M. Ba-Shammakh, Combined effect of CNTs with ZIF-302 into polysulfone to fabricate MMMs for enhanced CO2 separation from flue gases, Arab. J. Sci. Eng. 41(2016) 2573-2582.[19] D.R. Paul, D.R. Kemp, The diffusion time lag in polymer membranes containing adsorptive fillers, J. Polym. Sci. Part C Polym. Symp. 41(1973) 79-93.[20] H. Vinh-Thang, S. Kaliaguine, Predictive models for mixed-matrix membrane performance:a review, J. ACS Public. 113(2012) 4980-5028.[21] Y.C. Xiao, T.S. Chung, H.M. Guan, M.D. Guiver, Synthesis, cross-linking and carbonization of co-polyimides containing internal acetylene units for gas separation, J. Membr. Sci. 302(2007) 254-264.[22] A.C.C. Chang, S.S.C. Chuang, M. Gray, Y. Soong, In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(aminopropyl) triethoxysilane, Energy Fuel 17(2003) 468-473.[23] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(2008) 390-400. |