[1] J. Guzowski, P. Garstecki, Droplet clusters:exploring the phase space of soft mesoscale atoms, Phys. Rev. Lett. 114(2015), 188302. [2] M. Costantini, C. Colosi, J. Jaroszewicz, A. Tosato, W. Swieszkowski, M. Dentini, P. Garstecki, A. Barbetta, Microfluidic foaming:a powerful tool for tailoring the morphological and permeability properties of sponge-like biopolymeric scaffolds, ACS Appl. Mater. Interfaces 7(2015) 23660-23671. [3] T. Hao, X. Ma, Z. Lan, R. Jiang, X. Fan, Analysis of the transition from laminar annular flow to intermittent flow of steam condensation in noncircular microchannels, Int. J. Heat Mass Transf. 66(2013) 745-756. [4] T. Hao, X. Ma, Z. Lan, N. Li, Y. Zhao, H. Ma, Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe, Int. J. Heat Mass Transf. 72(2014) 50-65. [5] A. Faridkhou, J.-N. Tourvieille, F. Larachi, Reactions, hydrodynamics and mass transfer in micro-packed beds-Overview and new mass transfer data, Chem. Eng. Process. Process Intensif. 110(2016) 80-96. [6] O. Cybulski, S. Jakiela, P. Garstecki, Between giant oscillations and uniform distribution of droplets:The role of varying lumen of channels in microfluidic networks, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2015), 063008. [7] M. Costantini, C. Colosi, J. Guzowski, A. Barbetta, J. Jaroszewicz, W. Święszkowski, M. Dentini, P. Garstecki, Highly ordered and tunable polyHIPEs by using microfluidics, J. Mater. Chem. B 2(2014) 2290. [8] J. Atencia, D.J. Beebe, Controlled microfluidic interfaces, Nature 437(2005) 648-655. [9] M.T. Kreutzer, F. Kapteijn, J.A. Moulijn, J.J. Heiszwolf, Multiphase monolith reactors:Chemical reaction engineering of segmented flow in microchannels, Chem. Eng. Sci. 60(2005) 5895-5916. [10] P. Sobieszuk, J. Aubin, R. Pohorecki, Hydrodynamics and mass transfer in gas-liquid flows in microreactors, Chem. Eng. Technol. 35(2012) 1346-1358. [11] J.H. Xu, S.W. Li, Y.J. Wang, G.S. Luo, Controllable gas-liquid phase flow patterns and monodisperse microbubbles in a microfluidic T-junction device, Appl. Phys. Lett. 88(2006), 133506. [12] J. Tan, S.W. Li, K. Wang, G.S. Luo, Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route, Chem. Eng. J. 146(2009) 428-433. [13] X.-B. Li, F.-C. Li, J.-C. Yang, H. Kinoshita, M. Oishi, M. Oshima, Study on the mechanism of droplet formation in T-junction microchannel, Chem. Eng. Sci. 69(2012) 340-351. [14] T. Fu, Y. Ma, Bubble formation and breakup dynamics in microfluidic devices:A review, Chem. Eng. Sci. 135(2015) 343-372. [15] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up, Lab Chip 6(2006) 437-446. [16] M. De Menech, P. Garstecki, F. Jousse, H.A. Stone, Transition from squeezing to dripping in a microfluidic T-shaped junction, J. Fluid Mech. 595(2008) 141-161. [17] T. Fu, Y. Ma, D. Funfschilling, C. Zhu, H.Z. Li, Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction, Chem. Eng. Sci. 65(2010) 3739-3748. [18] V. van Steijn, M.T. Kreutzer, C.R. Kleijn, -PIV study of the formation of segmented flow in microfluidic T-junctions, Chem. Eng. Sci. 62(2007) 7505-7514. [19] J. Yue, L. Luo, Y. Gonthier, G. Chen, Q. Yuan, An experimental investigation of gas-liquid two-phase flow in single microchannel contactors, Chem. Eng. Sci. 63(2008) 4189-4202. [20] Y. Chaoqun, Z. Yuchao, Y. Chunbo, D. Minhui, D. Zhengya, C. Guangwen, Characteristics of slug flow with inertial effects in a rectangular microchannel, Chem. Eng. Sci. 95(2013) 246-256. [21] T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86(2001) 4163-4166. [22] J. Husny, J.J. Cooper-White, The effect of elasticity on drop creation in T-shaped microchannels, J. Non-Newtonian Fluid Mech. 137(2006) 121-136. [23] A. Leclerc, R. Philippe, V. Houzelot, D. Schweich, C. de Bellefon, Gas-liquid Taylor flow in square micro-channels:New inlet geometries and interfacial area tuning, Chem. Eng. J. 165(2010) 290-300. [24] R. Xiong, J.N. Chung, Bubble generation and transport in a microfluidic device with high aspect ratio, Exp. Thermal Fluid Sci. 33(2009) 1156-1162. [25] C. Yao, Z. Dong, Y. Zhao, G. Chen, The effect of system pressure on gas-liquid slug flow in a microchannel, AIChE J. 60(2014) 1132-1142. [26] D. Qian, A. Lawal, Numerical study on gas and liquid slugs for Taylor flow in a T-junction microchannel, Chem. Eng. Sci. 61(2006) 7609-7625. [27] S. Haase, Characterisation of gas-liquid two-phase flow in minichannels with co-flowing fluid injection inside the channel, part II:Gas bubble and liquid slug lengths, film thickness, and void fraction within Taylor flow, Int. J. Multiphase Flow 88(2017) 251-269. [28] H.B. Ma, Oscillating Heat Pipes, Springer, New York Heidelberg Dordrecht London, 2015. [29] S. Rittidech, N. Pipatpaiboon, P. Terdtoon, Heat-transfer characteristics of a closed-loop oscillating heat-pipe with check valves, Appl. Energy 84(2007) 565-577. [30] V. Vansteijn, M.T. Kreutzer, C.R. Kleijn, Velocity fluctuations of segmented flow in microchannels, Chem. Eng. J. 135(2008) S159-S165. [31] Y.S. Won, D.K. Chung, A.F. Mills, Density, viscosity, surface tension, and carbon dioxide solubility and diffusivity of methanol, ethanol, aqueous propanol, and aqueous ethylene glycol at 25℃, J. Chem. Eng. Data 26(1981) 140-141. [32] S. van der Graaf, T. Nisisako, C.G.P.H. Schroën, R.G.M. Van Der Sman, R.M. Boom, Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel, Langmuir 22(2006) 4144-4152. [33] M.L.J. Steegmans, C.G.P.H. Schroën, R.M. Boom, Generalised insights in droplet formation at T-junctions through statistical analysis, Chem. Eng. Sci. 64(2009) 3042-3050. [34] J. Berthier, P. Silberzan, Microfluidics for Biotechnology, Artech House, Boston|London, 2010. [35] T. Abadie, J. Aubin, D. Legendre, C. Xuereb, Hydrodynamics of gas-liquid Taylor flow in rectangular microchannels, Microfluid. Nanofluid. 12(2011) 355-369. [36] P. Zaloha, J. Kristal, V. Jiricny, N. Völkel, C. Xuereb, J. Aubin, Characteristics of liquid slugs in gas-liquid Taylor flow in microchannels, Chem. Eng. Sci. 68(2012) 640-649. [37] C. Yao, Z. Dong, Y. Zhang, Y. Mi, Y. Zhao, G. Chen, On the leakage flow around gas bubbles in slug flow in a microchannel, AIChE J. 61(2015) 3964-3972. [38] R. Pohorecki, K. Kula, A simple mechanism of bubble and slug formation in Taylor flow in microchannels, Chem. Eng. Res. Des. 86(2008) 997-1001. |