[1] J. Cheng, J.H. Zhou, J. Liu, X.Y. Cao, K.F. Cen, Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes, Energy Fuel 23(2009) 2506-2516. [2] Q. Wen, S. Pan, L. Hu, Industrial Solid Waste Treatment in China, 2014 International Congress on Environmental Geotechnics, 20141082-1088. [3] J.M. Valverde, P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, Ca-looping for post combustion CO2 capture:A comparative analysis on the performances of dolomite and limestone, Appl. Energy 138(2015) 202-215. [4] M. Kavosh, K. Patchigolla, E.J. Anthony, J.E. Oakey, Carbonation performance of lime for cyclic CO2 capture following limestone calcination in steam/CO2 atmosphere, Appl. Energy 131(2014) 499-507. [5] Y. Wang, S.Y. Lin, Y. Suzuki, Experimental study on CO2 capture conditions of a fluidized bed limestone decomposition reactor, Fuel Process. Technol. 91(2010) 958-963. [6] W. Zhang, Y.J. Li, Z.R. He, X.T. Ma, H.P. Song, CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions, Appl. Energy 206(2017) 869-878. [7] C. Ortiz, J.M. Valverde, R. Chacartegui, M. Benítez-Guerrero, A. Perejón, L.M. Romeo, The Oxy-CaL process:A novel CO2 capture system by integrating partial oxycombustion with the calcium-looping process, Appl. Energy 196(2017) 1-17. [8] Z.R. He, Y.J. Li, W. Zhang, X.T. Ma, L.B. Duan, H.P. Song, Effect of re-carbonation on CO2 capture by carbide slag and energy consumption in the calciner, Energy Convers. Manag. 148(2017) 1468-1477. [9] Z.S. Li, N.S. Cai, Y.Y. Huang, Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new ca-based CO2 sorbent, Ind. Eng. Chem. Res. 45(2006) 1911-1917. [10] Y.J. Li, C.S. Zhao, L.B. Duan, C. Liang, Q.Z. Li, W. Zhou, H.C. Chen, Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture, Fuel Process. Technol. 89(2008) 1461-1469. [11] F.N. Ridha, V. Manovic, A. Macchi, E.J. Anthony, The effect of SO2 on CO2 capture by CaO-based pellets prepared with a kaolin derived Al(OH)3 binder, Appl. Energy 92(2012) 415-420. [12] E. Serris, L. Favergeon, M. Pijolat, M. Soustelle, P. Nortier, R.S. Gärtner, T. Chopin, Z. Habib, Study of the hydration of CaO powder by gas-solid reaction, Cement Concrete Res. 41(2011) 1078-1084. [13] S.Y. Lin, M. Harada, Y. Suzuki, H. Hatano, CaO hydration rate at high temperature (~1023 K), Energy Fuel 20(2006) 903-908. [14] Y.J. Li, R.Y. Sun, C.T. Liu, H.L. Liu, C.M. Lu, CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles, Int. J. Greenhouse Gas Contr. 9(2012) 117-123. [15] Y.J. Li, W.J. Wang, X.X. Cheng, M.Y. Su, X.T. Ma, X. Xie, Simultaneous CO2/HCl removal using carbide slag in repetitive adsorption/desorption cycles, Fuel 142(2015) 21-27. [16] J.M. Valverde, P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, Calcium-looping for postcombustion CO2 capture. On the adverse effect of sorbent regeneration under CO2, Appl. Energy 126(2014) 161-171. [17] C.L. Qin, D.L. He, Z.H. Zhang, L.L. Tan, J.Y. Ran, The consecutive calcination/sulfation in calcium looping for CO2 capture:Particle modeling and behaviour investigation, Chem. Eng. J. 334(2018) 2238-2249. [18] H.R. Radfarnia, A. Sayari, A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol-gel technique, Chem. Eng. J. 262(2015) 913-920. [19] Y.C. Hu, W.Q. Liu, Y. Peng, Y.D. Yang, J. Sun, H.Q. Chen, Z.J. Zhou, M.H. Xu, One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gel-casting technique, Fuel Process. Technol. 160(2017) 70-77. [20] Y. Zhao, P.Y. Xu, L.D. Wang, Simultaneous removal of SO2 and NO by highly reactive absorbent containing calcium hypochlorite, AIChE J. 27(2008) 460-468. [21] L. Biganzoli, G. Racanella, L. Rigamonti, R. Marras, M. Grosso, High temperature abatement of acid gases from waste incineration. Part I:Experimental tests in full scale plants, Waste Manag. 36(2015) 98-105. [22] J. Partanen, P. Backman, R. Backman, M. Hupa, Absorption of HCl by limestone in hot flue gases. Part III:Simultaneous absorption with SO2, Fuel 84(2005) 1685-1694. [23] X. Xie, Y.J. Li, W.J. Wang, L. Shi, HCl removal using cycled carbide slag from calcium looping cycles, Appl. Energy 135(2014) 391-401. [24] C.S. Chyang, Y.L. Han, Z.C. Zhong, Study of HCl absorption by CaO at high temperature, Energy Fuel 23(2009) 3948-3953. [25] Z.C. Sun, F.C. Yu, F.X. Li, S.G. Li, L.S. Fan, Experimental study of HCl capture using CaO sorbents:Activation, deactivation, reactivation, and ionic transfer mechanism, Ind. Eng. Chem. Res. 50(2011) 6034-6043. [26] T. Chin, A.R. Yan, D.T. Liang, Study of the reaction of lime with HCl under simulated flue gas conditions using X-ray diffraction characterization and thermodynamic prediction, Ind. Eng. Chem. Res. 44(2005) 8730-8738. [27] D.W. Zhao, H.B. Li, Y. Cui, J. Yang, Control of inclusion composition in calcium treated aluminum killed steels, ISIJ Int. 56(2016) 1181-1187. [28] G.W. Yang, X.H. Wang, Inclusion evolution after calcium addition in low carbon alkilled steel with ultra-low sulfur content, ISIJ Int. 55(2015) 126-133. [29] R. Sah, S.K. Dutta, Effects of binder on the properties of iron ore-coal composite pellets, Min. Proc. Ext. Met. Rev. 31(2010) 73-85. [30] M. Erans, V. Manovic, E.J. Anthony, Calcium looping sorbents for CO2 capture, Appl. Energy 180(2016) 722-742. [31] Z.C. Sun, H. Chi, L.S. Fan, Physical and chemical mechanism for increased surface area and pore volume of CaO in water hydration, Ind. Eng. Chem. Res. 51(2012) 10793-10799. [32] C.B. Wang, Y. Zhang, L.F. Jia, Y.W. Tan, Effect of water vapor on the pore structure and sulfation of CaO, Fuel 130(2014) 60-65. [33] S.K. Bhatia, D.D. Perlmutter, Effect of the product layer on the kinetics of the CO2-lime reaction, AIChE J. 29(1983) 79-86. [34] C.B. Wang, X. Zhou, L.F. Jia, Y.W. Tan, Sintering of limestone in calcination/carbonation cycles, Ind. Eng. Chem. Res. 53(2014) 16235-16244. [35] J.M. Valverde, P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, Limestone calcination nearby equilibrium:Kinetics, CaO crystal structure, sintering and reactivity, J. Phys. Chem. C 119(2015) 1623-1641. [36] A. Biasin, C.U. Segre, M. Strumendo, CaCO3 crystallite evolution during CaO carbonation:Critical crystallite size and rate constant measurement by in-situ synchrotron radiation X-ray powder diffraction, Cryst. Growth Des. 15(2015) 5188-5201. [37] S.F. Wu, Q.H. Li, J.N. Kim, K.B. Yi, Properties of a nano CaO/Al2O3 CO2 sorbent, Ind. Eng. Chem. Res. 47(2008) 180-184. [38] J.Y. Jing, T.Y. Li, X.W. Zhang, S.D. Wang, J. Feng, W.A. Turmel, W.Y. Li, Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism, Appl. Energy 199(2017) 225-233. [39] Y. Fujimori, X.H. Zhao, X. Shao, S.V. Levchenko, N. Nilius, M. Sterrer, H.J. Freund, Interaction of water with the CaO (001) surface, J. Phys. Chem. C 120(2016) 5565-5576. [40] I. Yanase, T. Sasaki, H. Kobayashi, Effect of orientation of CaO plate-like particle on CO2 adsorption property, Powder Technol. 315(2017) 15-21. [41] J.P. Allen, S.C. Parker, D.W. Price, Atomistic simulation of the surface carbonation of calcium and magnesium oxide surfaces, J. Phys. Chem. C 113(2009) 8320-8328. [42] Y.J. Li, M.Y. Su, X. Xie, S.M. Wu, C.T. Liu, CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis, Appl. Energy 145(2015) 60-68. [43] Y.J. Li, C.S. Zhao, H.C. Chen, Y.K. Liu, Enhancement of Ca-based sorbent multicyclic behavior in Ca looping process for CO2 separation, Chem. Eng. Technol. 32(2009) 548-555. [44] F.N. Ridha, V. Manovic, A. Macchi, M.A. Anthony, E.J. Anthony, Assessment of limestone treatment with organic acids for CO2 capture in Ca-looping cycles, Fuel Process. Technol. 116(2013) 284-291. [45] R.Y. Sun, Y.J. Li, S.M. Wu, C.T. Liu, H.L. Liu, C.M. Lu, Enhancement of CO2 capture capacity by modifying limestone with propionic acid, Powder Technol. 233(2013) 8-14. [46] H.R. Radfarnia, M.C. Iliuta, Limestone acidification using citric acid coupled with two-step calcination for improving the CO2 sorbent activity, Ind. Eng. Chem. Res. 52(2013) 7002-7013. [47] C.Y. Chi, Y.J. Li, X.T. Ma, L.B. Duan, CO2 capture performance of CaO modified with by-product of biodiesel at calcium looping conditions, Chem. Eng. J. 326(2017) 378-388. [48] W.J. Wang, L.L. Fan, G.P. Wang, Y.H. Li, CO2 and SO2 sorption on the alkali metals doped CaO (100) surface:A DFT-D study, Appl. Surf. Sci. 425(2017) 972-977. [49] L. Barelli, G. Bidini, A. Di Michele, F. Gallorini, C. Petrillo, F. Sacchetti, Synthesis and test of sorbents based on calcium aluminates for SE-SR, Appl. Energy 127(2014) 81-92. [50] M.M. Zhang, Y.X. Peng, Y.Z. Sun, P. Li, J.G. Yu, Preparation of CaO-Al2O3 sorbent and CO2 capture performance at high temperature, Fuel 111(2013) 636-642. [51] R. Filitz, A.M. Kierzkowska, M. Broda, C.R. Müller, Highly efficient CO2 sorbents:Development of synthetic, calcium-rich dolomites, Environ. Sci. Technol. 46(2011) 559-565. [52] M. Aihara, T. Nagai, J. Mastsushita, Y. Negishi, H. Ohya, Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction, Appl. Energy 69(2001) 225-238. [53] P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, J.M. Valverde, Nanosilica supported CaO:A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions, Appl. Energy 118(2014) 92-99. [54] R.Y. Sun, Y.J. Li, H.L. Liu, S.M. Wu, C.M. Lu, CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle, Appl. Energy 89(2012) 368-373. [55] R. Koirala, G.K. Reddy, P.G. Smirniotis, Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature, Energy Fuel 26(2011) 3103-3109. [56] I. Fujii, M. Ishino, S. Akiyama, M.S. Murthy, K.S. Rajanandam, Behavior of Ca(OH)2/CaO pellet under dehydration and hydration, Sol. Energy 53(1994) 329-341. [57] N.B. Singh, N.P. Singh, Formation of CaO from thermal decomposition of calcium carbonate in the presence of carboxylic acids, J. Therm. Anal. Calorim. 89(2007) 159-162. [58] J.W. Shi, Y.J. Li, Q. Zhang, X.T. Ma, L.B. Duan, X.G. Zhou, CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions, Appl. Energy 203(2017) 412-421. [59] X.T. Ma, Y.J. Li, L. Shi, Z.R. He, Z.Y. Wang, Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process, Appl. Energy 168(2016) 85-95. [60] Z.R. He, Y.J. Li, X.T. Ma, W. Zhang, C.Y. Chi, Z.Y. Wang, Influence of steam in carbonation stage on CO2 capture by Ca-based industrial waste during calcium looping cycles, Int. J. Hydrog. Energy 41(2016) 4296-4304. [61] H. Yang, J.W. Cao, Z. Wang, H.H. Chen, X.Z. Gong, Discovery of impurities existing state in carbide slag by chemical dissociation, Int. J. Miner. Process. 130(2014) 66-73. [62] J. Witek, R. Kusiorowski, Neutralization of cement-asbestos waste by melting in an arc-resistance furnace, Waste Manag. 69(2017) 336-345. [63] S.j. Hao, Y.Z. Zhang, W.F. Jiang, J. Fang, Y.D. Bai, Temperature rising rate method for measurement of activity of high active lime, Metall. Anal. 28(2008) 19-22. [64] G. Varhegyi, P. Szabo, E. Jakab, F. Till, Mathematical modeling of char reactivity in ArO2 and CO2-O2 mixtures, Energy Fuel 10(1996) 1208-1214. [65] H. Yoon, J. Wei, M.M. Denn, A model for moving-bed coal gasification reactors, AIChE J. 24(1978) 885-903. [66] J. Yu, X. Zeng, G.Y. Zhang, J.W. Zhang, Y. Wang, G.W. Xu, Kinetics and mechanism of direct reaction between CO2 and Ca(OH)2 in micro fluidized bed, Environ. Sci. Technol. 47(2013) 7514-7520. [67] Y. Ren, N. Mahinpey, N. Freitag, Kinetic model for the combustion of coke derived at different coking temperatures, Energy Fuel 21(2007) 82-87. |