[1] C. Muntean, W. Brandl, A. Iovi, P. Negrea, Studies on the thermal behavior of a complex mineral fertilizer of nitrophosphate type, Thermochim. Acta 439(2005) 21-26. [2] M. Alemrajabi, Å.C. Rasmuson, K. Korkmaz, K. Forsberg, Recovery of rare earth elements from nitrophosphoric acid solutions, Hydrometallurgy 169(2017) 253-262. [3] Y.K. Leong, M. Sganzerla, C.C. Berndt, G.R. Campbell, Metal ions solubility in plant phosphoric acid degree of ammonia neutralization and temperature effects, Ind. Eng. Chem. Res. 47(2008) 1380-1385. [4] H. Wang, R. Li, C.M. Fan, J.Q. Feng, S.L. Jiang, Z.M. Han, Removal of fluoride from the acid digestion liquor in production process of nitrophosphate fertilizer, J. Fluor. Chem. 180(2015) 122-129. [5] I. Hussain, The operating experience of Nitrophosphate plant, Procedia Eng. 46(2012) 172-177. [6] G.J. Millar, S.J. Couperthwaite, M.d. Bruyn, C.W. Leung, Ion exchange treatment of saline solutions using Lanxess S108H strong acid cation resin, Chem. Eng. J. 280(2015) 525-535. [7] A. Malovanyy, H. Sakalova, Y. Yatchyshyn, E. Plaza, M. Malovanyy, Concentration of ammonium from municipal wastewater using ion exchange process, Desalination 329(2013) 93-102. [8] N. Kabay, M. Demircioğlu, H. Ekinci, M. Yüksel, M. Sağlam, M. Akçay, M. Streat, Removal of metal pollutants (Cd(II) and Cr(III)) from phosphoric acid solutions by chelating resins containing Phosphonic or Diphosphonic groups, Ind. Eng. Chem. Res. 37(1998) 2541-2547. [9] K.C. Knudsen, The production of NPK fertilisers by ion exchange, J. Appl. Chem. Biotechnol. 24(1974) 701-708. [10] Y.I. Lim, S.B. Jørgensen, Optimization of a six-zone simulated-moving-bed chromatographic process, Ind. Eng. Chem. Res. 46(2007) 3684-3697. [11] C. Özmetin, Ö. Aydın, M.M. Kocakerim, M. Korkmaz, E. Özmetin, An empirical kinetic model for calcium removal from calcium impurity-containing saturated boric acid solution by ion exchange technology using Amberlite IR-120 resin, Chem. Eng. J. 148(2009) 420-424. [12] Z.H. Yu, T. Qi, J.K. Qu, L. Wang, J.L. Chu, Removal of Ca(II) and Mg(II) from potassium chromate solution on Amberlite IRC 748 synthetic resin by ion exchange, J. Hazard. Mater. 167(2009) 406-412. [13] M. Coca, S. Mato, G. González-Benito, M.Á. Urueña, M.T. García-Cubero, Use of weak cation exchange resin Lewatit S 8528 as alternative to strong ion exchange resins for calcium salt removal, J. Food Eng. 97(2010) 569-573. [14] J.T.T. Foster, Y. Hu, T.H. Boyer, Affinity of potassium-form cation exchange resin for alkaline earth and transition metals, Sep. Purif. Technol. 175(2017) 229-237. [15] K.L. Ang, D. Li, A.N. Nikoloski, The effectiveness of ion exchange resins in separating uranium and thorium from rare earth elements in acidic aqueous sulfate media. Part 1. Anionic and cationic resins, Hydrometallurgy 174(2017) 147-155. [16] K.H. Chu, Improved fixed bed models for metal biosorption, Chem. Eng. J. 97(2004) 233-239. [17] S. Kundu, A.K. Gupta, As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC):Experimental and modeling studies, Chem. Eng. J. 129(2007) 123-131. [18] S.S. Baral, N. Das, T.S. Ramulu, S.K. Sahoo, S.N. Das, G. Roy Chaudhury, Removal of Cr (VI) by thermally activated weed Salvinia cucullata in a fixed-bed column, J. Hazard. Mater. 161(2009) 1427-1435. [19] M.D. Víctor-Ortega, J.M. Ochando-Pulido, A. Martıínez-Ferez, Impacts of main parameters on the regeneration process efficiency of several ion exchange resins after final purification of olive mill effluent, Sep. Purif. Technol. 173(2017) 1-8. [20] X.Q. Lin, Q.L. Huang, G.X. Qi, S.L. Shi, L. Xiong, C. Huang, X.F. Chen, H.L. Li, X.D. Chen, Estimation of fixed-bed column parameters and mathematical modeling of breakthrough behaviors for adsorption of levulinic acid from aqueous solution using SY-01 resin, Sep. Purif. Technol. 174(2017) 222-231. [21] R.S. Juang, H.C. Kao, W. Chen, Column removal of Ni(II) from synthetic electroplating waste water using a strong-acid resin, Sep. Purif. Technol. 49(2006) 36-42. [22] M.D. Víctor-Ortega, J.M. Ochando-Pulido, A. Martıínez-Ferez, Iron removal and reuse from Fenton-like pretreated olive mill wastewater with novel strong-acid cation exchange resin fixed-bed column, J. Ind. Eng. Chem. 36(2016) 298-305. [23] J.W. Zhang, C.X. Zhu, F. Zhou, L. Ma, Adsorption behavior and kinetics for L-valine separation from aqueous solution using ion exchange resin, React. Funct. Polym. 130(2018) 51-60. [24] J. Silva-Yumi, M. Escudey, M. Gacitua, C. Pizarro, Kinetics, adsorption and desorption of Cd(II) and Cu(II) on natural allophane:Effect of iron oxide coating, Geoderma 319(2018) 70-79. [25] L. Ding, C. Wu, H.P. Deng, X.X. Zhang, Adsorptive characteristics of phosphate from aqueous solutions by MIEX resin, J. Colloid Interface Sci. 376(2012) 224-232. [26] W.T. Yi, C.Y. Yan, P.H. Ma, Removal of calcium and magnesium from LiHCO3 solutions for preparation of high-purity Li2CO3 by ion-exchange resin, Desalination 249(2009) 729-735. [27] J.P. Michael, S. Karin, D.O. Mark, Comparative study of the application of chelating resins for rare earth recovery, Hydrometallurgy 169(2017) 275-281. [28] Z.H. Yu, T. Qi, J.K. Qu, Y.C. Guo, Application of mathematical models for ion-exchange removal of calcium ions from potassium chromate solutions by Amberlite IRC 748 resin in a continuous fixed bed column, Hydrometallurgy 158(2015) 165-171. [29] J.P. Chen, M.L. Chua, B.P. Zhang, Effects of competitive ions, humic acid, and pH on removal of ammonium and phosphorous from the synthetic industrial effluent by ion exchange resins, Waste Manag. 22(2002) 711-719. |