[1] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452(7185) (2008) 301-310. [2] M. Elimelech, W.A. Phillip, The future of seawater desalination:Energy, technology, and the environment, Science 333(6043) (2011) 712-717. [3] N. W. O., T. M. N., Membranes for hydrogen separation, Chem. Rev. 107(10) (2007) 4078-4110. [4] S. A., S. Fernando, Hydrogen membrane separation techniques, Ind. Eng. Chem. Res. 45(3) (2006) 875-881. [5] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff:The trade-off between membrane permeability and selectivity, Science 356(6343) (2017) eaab 0530. [6] K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination-Development to date and future potential, J. Membr. Sci. 370(1-2) (2011) 1-22. [7] J.R. Werber, A. Deshmukh, M. Elimelech, The critical need for increased selectivity, not increased water permeability, for desalination membranes, Environ. Sci. Technol. Lett. 3(4) (2016) 112-120. [8] J.R. Werber, C.O. Osuji, M. Elimelech,, Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1(5) (2016). [9] Z. Yang, X.-H. Ma, C.Y. Tang, Recent development of novel membranes for desalination, Desalination 434(2018) 37-59. [10] J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci. 479(2015) 256-275. [11] W.J. Lau, A.F. Ismail, N. Misdan, M.A. Kassim, A recent progress in thin film composite membrane:A review, Desalination 287(2012) 190-199. [12] X. Zhuang, Y. Mai, D. Wu, F. Zhang, X. Feng, Two-dimensional soft nanomaterials:A fascinating world of materials, Adv. Mater. 27(3) (2015) 403-427. [13] H. Zhang, Ultrathin two-dimensional nanomaterials, ACS Nano 9(10) (2015) 9451-9469. [14] G. Liu, W. Jin, N. Xu, Two-dimensional-material membranes:A new family of highperformance separation membranes, Angew. Chem. Int. Ed. Engl. 55(43) (2016) 13384-13397. [15] X.Q. Cheng, Z.X. Wang, X. Jiang, T. Li, C.H. Lau, Z. Guo, J. Ma, L. Shao, Towards sustainable ultrafast molecular-separation membranes:From conventional polymers to emerging materials, Prog. Mater. Sci. 92(2018) 258-283. [16] C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev. 117(9) (2017) 6225-6331. [17] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A. 102(30) (2005) 10451-10453. [18] K. Varoon, X. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C.Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science 334(6052) (2011) 72-75. [19] L. Niu, M. Li, X. Tao, Z. Xie, X. Zhou, A.P. Raju, R.J. Young, Z. Zheng, Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets, Nanoscale 5(16) (2013) 7202-7208. [20] R. Ma, T. Sasaki, Two-dimensional oxide and hydroxide nanosheets:Controllable high-quality exfoliation, molecular assembly, and exploration of functionality, Acc. Chem. Res. 48(1) (2015) 136-143. [21] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45(7) (2007) 1558-1565. [22] N. Michael, V.N. Mochalin, M.W. Barsoum, G. Yury, Two-dimensional materials:25th anniversary article:MXenes:A new family of two-dimensional materials (Adv. Mater. 7/2014), Adv. Mater. 26(7) (2014) 992-1005. [23] J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition, Chem. Sci. 6(12) (2015) 6705-6716. [24] C. Tan, H. Zhang, Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials, Nat. Commun. 6(2015) 7873. [25] D. Cohen-Tanugi, J.C. Grossman, Nanoporous graphene as a reverse osmosis membrane:Recent insights from theory and simulation, Desalination 366(2015) 59-70. [26] D. Cohen-Tanugi, L.-C. Lin, J.C. Grossman, Multilayer nanoporous graphene membranes for water desalination, Nano Lett. 16(2) (2016) 1027-1033. [27] S.C. O'Hern, M.S. Boutilier, J.C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, R. Karnik, Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes, Nano Lett. 14(3) (2014) 1234-1241. [28] S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nat. Nanotechnol. 10(5) (2015) 459-464. [29] J. Buchheim, R.M. Wyss, I. Shorubalko, H.G. Park, Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation, Nanoscale 8(15) (2016) 8345-8354. [30] F.X. Xiao, M. Pagliaro, Y.J. Xu, B. Liu, Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality:A new perspective for rational construction of multilayer assemblies, Chem. Soc. Rev. 45(11) (2016) 3088-3121. [31] K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K.C.W. Wu, J.P. Hill, Layer-bylayer nanoarchitectonics:Invention, innovation, and evolution, Chem. Lett. 43(1) (2014) 36-68. [32] G. Liu, W. Jin, N. Xu, Graphene-based membranes, Chem. Soc. Rev. 44(15) (2015) 5016-5030. [33] J. Kim, L.J. Cote, J. Huang, Two dimensional soft material:New faces of graphene oxide, Acc. Chem. Res. 45(8) (2012) 1356. [34] X. Chen, G. Liu, H. Zhang, Y. Fan, Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol, Chin. J. Chem. Eng. 23(7) (2015) 1102-1109. [35] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1) (2010) 228-240. [36] M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol. 47(8) (2013) 3715-3723. [37] A. Turchanin, A. Golzhauser, Carbon nanomembranes, Adv. Mater. 28(29) (2016) 6075-6103. [38] F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev. 44(16) (2015) 5861-5896. [39] P. Sun, K. Wang, H. Zhu, Recent developments in graphene-based membranes:Structure, mass-transport mechanism and potential applications, Adv. Mater. 28(12) (2016) 2287-2310. [40] L. Chen, N. Li, Z. Wen, L. Zhang, Q. Chen, L. Chen, P. Si, J. Feng, Y. Li, J. Lou, L. Ci, Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application, Chem. Eng. J. 347(2018) 12-18. [41] M. Zhang, K. Guan, J. Shen, G. Liu, Y. Fan, W. Jin, Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity, AIChE J. 63(11) (2017). [42] J. Ma, X. Guo, Y. Ying, D. Liu, C. Zhong, Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance, Chem. Eng. J. 313(2017) 890-898. [43] Z. Rao, K. Feng, B. Tang, P. Wu, Surface decoration of amino-functionalized metalorganic framework/graphene oxide composite onto polydopamine-coated membrane substrate for highly efficient heavy metal removal, ACS Appl. Mater. Interfaces 9(3) (2017) 2594-2605. [44] H. Zhang, X. Quan, S. Chen, X. Fan, G. Wei, H. Yu, Combined effects of surface charge and pore size on co-enhanced permeability and ion selectivity through RGO-OCNT nanofiltration membranes, Environ. Sci. Technol. 52(8) (2018) 4827-4834. [45] H. Kang, J. Shi, L. Liu, M. Shan, Z. Xu, N. Li, J. Li, H. Lv, X. Qian, L. Zhao, Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes, Appl. Surf. Sci. 428(2018) 990-999. [46] M.G. Kochameshki, A. Marjani, M. Mahmoudian, K. Farhadi, Grafting of diallyldimethylammonium chloride on graphene oxide by RAFT polymerization for modification of nanocomposite polysulfone membranes using in water treatment, Chem. Eng. J. 309(2017) 206-221. [47] J. Zhu, M. Tian, J. Hou, J. Wang, J. Lin, Y. Zhang, J. Liu, B. Van der Bruggen, Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane, J. Mater. Chem. A 4(5) (2016) 1980-1990. [48] Y.H. Xi, J.Q. Hu, Z. Liu, R. Xie, X.J. Ju, W. Wang, L.Y. Chu, Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing, ACS Appl. Mater. Interfaces 8(24) (2016) 15557-15566. [49] S.J. Kim, D.W. Kim, K.M. Cho, K.M. Kang, J. Choi, D. Kim, H.T. Jung, Ultrathin graphene oxide membranes on freestanding carbon nanotube supports for enhanced selective permeation in organic solvents, Sci. Rep. 8(1) (2018) 1959. [50] Q. Zhang, S. Chen, X. Fan, H. Zhang, H. Yu, X. Quan, A multifunctional graphenebased nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving, Appl. Catal. B Environ. 224(2018) 204-213. [51] J.K. Holt, P. Hyung Gyu, W. Yinmin, S. Michael, A.B. Artyukhin, C.P. Grigoropoulos, N. Aleksandr, B. Olgica, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312(5776) (2006) 1034-1037. [52] L. Chen, G. Shi, J. Shen, B. Peng, B. Zhang, Y. Wang, F. Bian, J. Wang, D. Li, Z. Qian, G. Xu, G. Liu, J. Zeng, L. Zhang, Y. Yang, G. Zhou, M. Wu, W. Jin, J. Li, H. Fang, Ion sieving in graphene oxide membranes via cationic control of interlayer spacing, Nature 550(7676) (2017) 380-383. [53] S. Ayyaru, Y.-H. Ahn, Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes, J. Membr. Sci. 525(2017) 210-219. [54] Y. Kang, M. Obaid, J. Jang, M.H. Ham, I.S. Kim, Novel sulfonated graphene oxide incorporated polysulfone nanocomposite membranes for enhanced-performance in ultrafiltration process, Chemosphere 207(2018) 581-589. [55] J. Abraham, K.S. Vasu, C.D. Williams, K. Gopinadhan, Y. Su, C.T. Cherian, J. Dix, E. Prestat, S.J. Haigh, I.V. Grigorieva, P. Carbone, A.K. Geim, R.R. Nair, Tunable sieving of ions using graphene oxide membranes, Nat. Nanotechnol. 12(6) (2017) 546-550. [56] Z. Jia, Y. Wang, W. Shi, J. Wang, Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation, J. Membr. Sci. 520(2016) 139-144. [57] W.-S. Hung, C.-H. Tsou, M. De Guzman, Q.-F. An, Y.-L. Liu, Y.-M. Zhang, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26(9) (2014) 2983-2990. [58] N. Meng, W. Zhao, E. Shamsaei, G. Wang, X. Zeng, X. Lin, T. Xu, H. Wang, X. Zhang, A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine, J. Membr. Sci. 548(2018) 363-371. [59] Y. Zhang, K. Su, Z. Li, Graphene oxide composite membranes cross-linked with urea for enhanced desalting properties, J. Membr. Sci. 563(2018) 718-725. [60] M.E.A. Ali, F.M. Hassan, X. Feng, Improving the performance of TFC membranes via chelation and surface reaction:Applications in water desalination, J. Mater. Chem. A 4(17) (2016) 6620-6629. [61] Y. Qian, C. Zhou, A. Huang, Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes, Carbon 136(2018) 28-37. [62] Y. Zhang, S. Zhang, T.S. Chung, Nanometric graphene oxide framework membranes with enhanced heavy metal removal via nanofiltration, Environ. Sci. Technol. 49(16) (2015) 10235-10242. [63] K.H. Thebo, X. Qian, Q. Zhang, L. Chen, H.M. Cheng, W. Ren, Highly stable grapheneoxide-based membranes with superior permeability, Nat. Commun. 9(1) (2018) 1486. [64] M.-Y. Lim, Y.-S. Choi, J. Kim, K. Kim, H. Shin, J.-J. Kim, D.M. Shin, J.-C. Lee, Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine, J. Membr. Sci. 521(2017) 1-9. [65] G. Sarkar, N.R. Saha, I. Roy, A. Bhattacharyya, A. Adhikari, D. Rana, M. Bhowmik, M. Bose, R. Mishra, D. Chattopadhyay, Cross-linked methyl cellulose/graphene oxide rate controlling membranes for in vitro and ex vivo permeation studies of diltiazem hydrochloride, RSC Adv. 6(42) (2016) 36136-36145. [66] C. Xia, Z. Xu, J. Yu, Y. Sun, W. Jing, Fabrication of microporous GO-TiO2 membrane via an improved weak alkaline sol-gel method, J. Membr. Sci. 561(2018) 10-18. [67] X. Li, T. Liu, D.Wang, Q. Li, Z. Liu, N. Li, Y. Zhang, C. Xiao, X. Feng, Superlight adsorbent sponges based on graphene oxide cross-linked with poly(vinyl alcohol) for continuous flow adsorption, ACS Appl. Mater. Interfaces 10(25) (2018) 21672-21680. [68] P. Zhang, J.-L. Gong, G.-M. Zeng, C.-H. Deng, H.-C. Yang, H.-Y. Liu, S.-Y. Huan, Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal, Chem. Eng. J. 322(2017) 657-666. [69] F. Fei, L. Cseri, G. Szekely, C.F. Blanford, Robust covalently cross-linked polybenzimidazole/graphene oxide membranes for high-flux organic solvent nanofiltration, ACS Appl. Mater. Interfaces 10(18) (2018) 16140-16147. [70] J. Shi, W. Wu, Y. Xia, Z. Li, W. Li, Confined interfacial polymerization of polyamidegraphene oxide composite membranes for water desalination, Desalination 441(2018) 77-86. [71] S. Kim, R. Ou, Y. Hu, X. Li, H. Zhang, G.P. Simon, H. Wang, Non-swelling graphene oxide-polymer nanocomposite membrane for reverse osmosis desalination, J. Membr. Sci. 562(2018) 47-55. [72] G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, In situ polymerization of modified graphene/polyimide composite with improved mechanical and thermal properties, J. Mater. Sci. Mater. Electron. 28(1) (2016) 576-581. [73] G.S. Lai, W.J. Lau, P.S. Goh, A.F. Ismail, Y.H. Tan, C.Y. Chong, R. Krause-Rehberg, S. Awad, Tailor-made thin film nanocomposite membrane incorporated with graphene oxide using novel interfacial polymerization technique for enhanced water separation, Chem. Eng. J. 344(2018) 524-534. [74] Y. Zhuang, Y. Kong, K. Han, H. Hao, B. Shi, A physically cross-linked self-healable double-network polymer hydrogel as a framework for nanomaterial, New J. Chem. 41(24) (2017) 15127-15135. [75] C. Marambio-Jones, E.M.V. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanopart. Res. 12(5) (2010) 1531-1551. [76] M.S. Haider, G.N. Shao, S.M. Imran, S.S. Park, N. Abbas, M.S. Tahir, M. Hussain, W. Bae, H.T. Kim, Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications, Mater. Sci. Eng. C Mater. Biol. Appl. 62(2016) 732-745. [77] A. Charfi, N. Ben Amar, J. Harmand, Analysis of fouling mechanisms in anaerobic membrane bioreactors, Water Res. 46(8) (2012) 2637-2650. [78] Y. Chong, C. Ge, G. Fang, R. Wu, H. Zhang, Z. Chai, C. Chen, J.J. Yin, Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer, Environ. Sci. Technol. 51(17) (2017) 10154-10161. [79] F. Benhacine, A.s. Hadj-Hamou, A. Habi, Development of long-term antimicrobial poly (ε-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use, Polym. Bull. 73(5) (2015) 1207-1227. [80] H.L. Su, C.C. Chou, D.J. Hung, S.H. Lin, I.C. Pao, J.H. Lin, F.L. Huang, R.X. Dong, J.J. Lin, The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay, Biomaterials 30(30) (2009) 5979-5987. [81] C. Shuai, W. Guo, P. Wu, W. Yang, S. Hu, Y. Xia, P. Feng, A graphene oxide-Ag codispersing nanosystem:Dual synergistic effects on antibacterial activities and mechanical properties of polymer scaffolds, Chem. Eng. J. 347(2018) 322-333. [82] S. Pounraj, P. Somu, S. Paul, Chitosan and graphene oxide hybrid nanocomposite film doped with silver nanoparticles efficiently prevents biofouling, Appl. Surf. Sci. 452(2018) 487-497. [83] K. Ko, Y. Yu, M.-J. Kim, J. Kweon, H. Chung, Improvement in fouling resistance of silver-graphene oxide coated polyvinylidene fluoride membrane prepared by pressurized filtration, Sep. Purif. Technol. 194(2018) 161-169. [84] A.F. Faria, C. Liu, M. Xie, F. Perreault, L.D. Nghiem, J. Ma, M. Elimelech, Thin-film composite forward osmosis membranes functionalized with graphene oxide-silver nanocomposites for biofouling control, J. Membr. Sci. 525(2017) 146-156. [85] T.I. Kim, B. Kwon, J. Yoon, I.J. Park, G.S. Bang, Y. Park, Y.S. Seo, S.Y. Choi, Antibacterial activities of graphene oxide-molybdenum disulfide nanocomposite films, ACS Appl. Mater. Interfaces 9(9) (2017) 7908-7917. [86] S. Zhao, W. Yan, M. Shi, Z. Wang, J. Wang, S. Wang, Improving permeability and antifouling performance of polyethersulfone ultrafiltration membrane by incorporation of ZnO-DMF dispersion containing nano-ZnO and polyvinylpyrrolidone, J. Membr. Sci. 478(2015) 105-116. [87] Y.T. Chung, E. Mahmoudi, A.W. Mohammad, A. Benamor, D. Johnson, N. Hilal, Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control, Desalination 402(2017) 123-132. [88] E. Bagheripour, A.R. Moghadassi, S.M. Hosseini, B. Van der Bruggen, F. Parvizian, Novel composite graphene oxide/chitosan nanoplates incorporated into PES based nanofiltration membrane:Chromium removal and antifouling enhancement, J. Ind. Eng. Chem. 62(2018) 311-320. [89] J. Xue, S. Wang, X. Han, Y. Wang, X. Hua, J. Li, Chitosan-functionalized graphene oxide for enhanced permeability and antifouling of ultrafiltration membranes, Chem. Eng. Technol. 41(2) (2018) 270-277. [90] S. Yang, P. Lei, Y. Shan, D. Zhang, Preparation and characterization of antibacterial electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous membrane, Appl. Surf. Sci. 435(2018) 832-840. [91] V. Barbera, S. Guerra, L. Brambilla, M. Maggio, A. Serafini, L. Conzatti, A. Vitale, M. Galimberti, Carbon papers and aerogels based on graphene layers and chitosan:Direct preparation from high surface area graphite, Biomacromolecules 18(12) (2017) 3978-3991. |