[1] C. Changchun, J. Feng Liu, P. Liu, Y. Benhai, Investigation of photocatalytic degradation of methyl orange by using nano-sized ZnO, Adv. Chem. Eng. Sci. 1(2011) 9-14. [2] X. Zhang, Q. Liu, Preparation and characterization of titania photocatalyst codoped with boron, nickel, and cerium, Mater. Lett. 62(2008) 2589-2592. [3] K. Song, J. Zhou, J. Bao, Y. Feng, Photocatalytic activity of (copper, nitrogen)-codoped titanium dioxide nanoparticle, J. Am. Ceram. Soc. 91(2008) 1369-1371. [4] R. Jaiswal, N. Patel, D.C. Kothari, A. Miotello, Improved visible light photocatalytic activity of TiO2 co-doped with vanadium and nitrogen, Appl. Catal. B Environ. 126(2012) 47-54. [5] H. Zhuang, Y. Zhang, Z. Chu, J. Long, X. An, H. Zhang, H. Lin, Z. Zhang, X. Wang, Synergy of metal and nonmetal dopants for visible-light photocatalysis:A case-study of Sn and N co-doped TiO2, Phys. Chem. Chem. Phys. 18(2016) 9636. [6] E.M. Rockafellow, L.K. Stewart, W.S. Jenks, Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation?, Appl Catal. B Environ. 91(2009) 554-562. [7] J. Zhang, P. Zhou, J. Liub, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys. 16(2014) 20382. [8] G. Colon, M. Maicu, M.C. Hidalgo, J.A. Navio, Cu-doped TiO2 systems with improved photocatalytic activity, Appl. Catal. B Environ. 67(2006) 41-51. [9] G.H. Takaoka, T. Nose, M. Kawashita, Photocatalytic properties of Cr-doped TiO2 films prepared by oxygen cluster ion beam assisted deposition, Vacuum 83(2009) 679-682. [10] D.L. Hou, R.B. Zhao, H.J. Meng, L.Y. Jia, X.J. Ye, H.J. Zhou, X.L. Li, Roomtemperature ferromagnetism in Cu-doped TiO2 thin film, Thin Solid Films 516(2008) 3223-3322. [11] K. Umar Azmi Aris, H. Ahmad, T. Parveen, J. Jaafar, Z. Abdul Majid, A.V. Bhaskar, J. Talib, Synthesis of visible light active doped TiO2 for the degradation of organic pollutants-methylene blue and glyphosate, J. Anal. Sci. Technol. 7(2016) 29. [12] Y. Hua, P. Huang, W.Q. Huang, Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films, Adv. Powder Technol. 23(2012) 8-12. [13] T. Sreethawong, Y. Suzuki, S. Yoshikawa, Photocatalytic evolution of hydrogen over mesoporous TIO2 supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template, Int. J. Hydrog. Energy 30(2005) 1053-1062. [14] P. Pongwan, K. Wetchakun, S. Phanichphant, N. Wetchakun, Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 nanoparticles, Res. Chem. Intermed. 42(2016) 2815-2830. [15] J. Zhang, Y. Wu, M. Xing, S.A. Khan Leghari, S. Sajjad, Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides, Energy Environ. Sci. 3(2010) 715-726. [16] T. Umebayashi, T. Yamaki, H. Itoh, K. Asaia, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett. 81(2002) 3-15. [17] M. Xing, J. Zhang, F. Chen, New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light, Appl. Catal. B Environ. 89(2009) 563-569. [18] G. Liu, Ch. Han, M. Pelaez, D. Zhu, Shuijiao Liao, V. Likodimos, N. Ioannidis, A.G. Kontos, P. Falaras, S.M. Patrick, Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles, Nanotechnology 23(2012) 294003. [19] L. Lin, R.Y. Zheng, J.L. Xie, Y.X. Zhu, Y.C. Xie, Synthesis and characterization of phosphor and nitrogen Co-doped titania, Appl. Catal. B Environ. 76(2007) 196-202. [20] N. Shahina Begum, H.M. Farveez Ahmed, K.R. Gunashekar, Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique, Bull. Mater. Sci. 31(2008) 747-751. [21] D. Jing, Y. Zhang, L. Guo, Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution, Chem. Phys. Lett. 415(2005) 74-78. [22] H. Wingkei, C. Jimmy Yu, L. Shuncheng, Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity, J. Solid State Chem. 179(2006) 1171-1176. [23] X.W. Wu, D.J. Wu, X.J. Liu, Optical investigation on sulfur-doping effects in titanium dioxide nanoparticles, Appl. Phys. A Mater. Sci. Process. 97(2009) 243-248. [24] L. Gomathi Devi, R. Kavitha, Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol:A new insight into the bulk and surface modification, Mater. Chem. Phys. 143(2014) 1300-1308. [25] P. Singla, O.P. Pandey, K. Singh, Study of photocatalytic degradation of environmentally harmful phthalate ester using Ni-doped TiO2 nanoparticles, Int. J. Environ. Sci. Technol. 13(2016) 849-856. [26] M. Panizzaa, M.A. Oturan, Degradation of alizarin red by electro-Fenton process using a graphite-felt cathode, Electrochim. Acta 56(2011) 7084-7087. [27] M. Abu Tariq, M. Faisal, M. Muneer, Semiconductor-mediated photocatalysed degradation of two selected azo dye derivatives, amaranth and Bismarck brown in aqueous suspension, J. Hazard. Mater. 127(2005) 172-179. [28] M. Wong, W.C. Chu, D.S. Sun, H.S. Huang, J.H. Chen, P.J.T. Sai, N.T. Lin, M.S. Yu, S.H. Hsu, S.L. Wang, H.H. Chang, Pathogen. Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens, Appl. Environ. Microbiol. 72(2006) 6111-6116. [29] A. Pal, S.O. Pehkonen, E. Liya Yu, B. Madhumita Ray, Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light, J. Photochem. Photobiol. A Chem. 186(2007) 335-341. [30] X. Ma, L. Xue, S. Yin, M. Yang, Y. Yan, Preparation of V-doped TiO2 photocatalysts by the solution combustion method and their visible light photocatalysis activities, Mater. Sci. 29(2014) 863-868. [31] N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water:Investigation of the effect of operational parameters, J. Photochem. Photobiol. A Chem. 157(2003) 111-116. [32] K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles, J. Mater. Sci. Mater. Electron. 22(2017). [33] M. Jalalah, M. Faisal, H. Bouzid, A.A. Ismail, Saleh A. Al-Sayari, Dielectric and photocatalytic properties of sulfur doped TiO2 nanoparticles prepared by ball milling, Mater. Res. Bull. 48(2013) 3351-3356. [34] M. Hemraj Yadav, V. Sachin Otari, A. Raghvendra Bohara, S. Sawanta Mali, H. Shivaji Pawar, D. Sagar Delekar, Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria, J. Photochem. Photobiol. A Chem. 294(2014) 130-136. [35] M.M. Haque, A. Khan, K. Umar, Niyaz A. Mir, M. Muneer, T. Harada, M. Matsumura, Synthesis, characterization and photocatalytic activity of visible light induced Ni-doped TiO2, Energy. Environ. Focus 2(2013) 73-78. [36] S.W. Kim, R. Khan, T.J. Kim, W.J. Kim, Synthesis, characterization, and application of Zr-S co-doped TiO2 as visible-light active Photocatalyst, Bull. Kor. Chem. Soc. 29(2008) 1217. [37] Y.H. Lina, H.T. Hsuehb, C.W. Chang, H. Chu, The visible light-driven photo degradation of di methyl sulfide on S-doped TiO2:Characterization, kinetics, and reaction pathways, Appl. Catal. B Environ. 199(2016) 1-10. [38] Q.R. Deng, X.H. Xia, M.L. Guo, Y. Gao, G. Shao, Mn-doped TiO2 nano powders with remarkable visible light photocatalytic activity, Mater. Lett. 65(2011) 2051-2054. [39] H. Zhang, Z. Xing, Y. Zhang, Z. Li, X. Wu, Ch. Liu, Qi. Zhu, W. Zhou, Ni2+ and Ti3+ co-doped porous Ni2+ and Ti3+ co-doped porous black anatase TiO2 with unprecedented-high visible-light-driven photocatalytic degradation performance, RSC Adv. 5(2015) 107150. [40] N. Tigau, Structural characterization and optical properties of annealed Sb2S3 thin films, Rom. J. Physiol. 53(2008) 209-215. [41] N. Sharotri, D. Sud, A greener approach to synthesize visible light responsive nanoporous S-doped TiO2 with enhanced photocatalytic activity, New J. Chem. 39(2015) 2217-2223. [42] Z. Zou, Z. Zhou, H. Wang, M. Du, Oxygen defect-mediated magnetism in Fe-C co-doped TiO2, Adv. Mater. Sci. Eng. 7(2016) 6270129. [43] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Electron Spectroscopy, Physical electronic Division, Perkin Elmer Waltham eden Praitie, MN, 2011. [44] C.W. Dunnill, Z.A. Aiken, A. Kafizas, J. Pratten, M. Wilson, D.J. Morgan, I.P. Parkin, White light induced photocatalytic activity of sulfur-doped TiO2 thin films and their potential for antibacterial application, J. Mater. Chem. 19(2009) 8747-8754. [45] B.Gao,T.Wang,X.Fan,H.Gong,H.Guo,W.Xia,Y.Feng,X.Huang,J.He,Synthesis of yellow mesoporous Ni-doped TiO2 with enhanced photoelectron chemical performance under visible ligh, Inorg. Chem. Front. 5(2017) 898-906. [46] Z.P. Yao, F.H. Jia, S.J. Tian, C. Xiang, Z.H. Jiang, X.F. Bai, Microporous Ni-doped TiO2 film photocatalyst by plasma electrolytic oxidation, Appl. Mater. Sci. 2(2010) 2617-2622. [47] E. Gharibshahi, E. Saion, Influence of dose on particle size and optical properties of colloidal platinum nanoparticles, Int. J. Mol. Sci. 13(2012) 14723-14741. [48] K. Taranjeet, S. Abhishek, T. Amrit Pal, R.K. Wanchoo, Utilization of solar energy for the degradation of carbendazim and propiconazole by Fe doped TiO2, Sol. Energy 125(2016) 65-76. [49] V. Kavitha, P.S. Ramesh, D. Geetha, Synthesis and characterization of copper (Cu)/sulfur (S) co-doped anatase TiO2 via sol-gel method and photo degradation efficiency, J. Mater. Sci. Mater. Electron. 27(2016) 8118-8125. [50] L. Gomathi Devi, K. Nagaraju, B. Narasimha Murthy, S. Girish Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light, J. Mol. Catal. A Chem. 328(2010) 44-52. [51] X.Y. Chen, D.H. Kuo, D.F. Lu, Visible light response and superior dispersed Sdoped TiO2 nanoparticles synthesized via ionic liquid, Adv. Powder Technol. 28(2017) 1213-1220. [52] G.G. Nakhate, V.S. Nikam, K.G. Kanadea, S. Arbuj, B.B. Kale, J.O. Baeg, Hydrothermally derived nanosized Ni-doped TiO2:A visible light driven photocatalyst for methylene blue degradation, Mater. Chem. Phys. 124(2010) 976-981. [53] D.F. Zhang, Chemical synthesis of Ni/TiO2 nanophotocatalyst for UV/visible light assisted degradation of organic dye in aqueous solution, J. Sol-Gel Sci. Technol. 58(2011) 312-318. [54] S.H. Nama, T.K. Kimb, J.H. Boo, Physical property and photo-catalytic activity of sulfur doped TiO2 catalysts responding to visible light, Catal. Today 185(2012) 259-262. [55] M.A. Rauf, S. Salman Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J. (2009) 10-18. [56] Z. Jiaa, J. Miao, H.B. Lu, D. Habibi, W.C. Zhang, L.C. Zhang, Photocatalytic degradation and absorption kinetics of cibacron brilliant yellow 3G Pb nanosized ZnO catalyst under simulated solar light, J. Taiwan Inst. Chem. Eng. 000(2015) 1-8. [57] I. Othman, R.M. Mohamed, F.M. Ibrahem, Study of photocatalytic oxidation of indigo carmine dye on Mn-supported TiO2, J. Photochem. Photobiol. A Chem. 189(2007) 80-85. [58] S. Rakesh, A. Sannaiah, M. Netkal, M. Gowda, K. Ramesh Raksha, Synthesis of niobium doped ZnO nanoparticles by electrochemical method:Characterization, photo degradation of indigo carmine dye and antibacterial study, Adv. Nanoparticle 3(2014) 133-147. [59] K. Subramani, K. Byrappa, S. Ananda, K. Lokanatha rai, C. Ranganathaiah, M. Yoshimura, Photocatalytic degradation of indigo carmine dye using TiO2 impregnated activated carbon, Bull. Mater. Sci. 30(2007) 37-41. [60] H.K. Xiao, T. Zhang, F. Dong, Y. Zhang, Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phasejunction construction for optimizing photocatalysis, Appl. Catal. B Environ. 203(2017) 879-888. |