[1] T.A. Zhang, W.X. Zhu, G.Z. Lu, Aluminium Metallurgy Technology, Science Press, Beijing, 2014, pp. 5-7(in Chinese). [2] S. Ruan, L.N. Shi, J. Li, A.R. Gerson, Desilication of hematite, goethite and iron powder seeded low alumina to caustic liquors, Hydrometallurgy 169(2017) 297-305. [3] X.B. Li, X.J. Huang, T.G. Qi, Q.S. Zhou, Y.L. Wang, Z.H. Peng, G.H. Liu, Preliminary results on selective surface magnetization and separation of alumina-/silicabearing minerals, Miner. Eng. 81(2015) 135-141. [4] N.A. Webster, M.J. Loan, I.C. Madsen, R.B. Knott, J.A. Kimpton, An investigation of the mechanisms of goethite, hematite and magnetite-seeded Al(OH)3 precipitation from synthetic Bayer liquor, Hydrometallurgy 109(1) (2011) 72-79. [5] W.K. Chen, G.C. Peng, Intensified Digestion Technology of Bauxite, Metallurgical Industry Press, Beijing, 1998, pp. 1-13(in Chinese). [6] W.T. Liang, S.J. Couperthwaite, G. Kaur, C. Yan, D.W. Johnstone, G.J. Millar, Effect of strong acids on red mud structural and fluoride adsorption properties, J. Colloid Interface Sci. 423(3) (2014) 158-165. [7] X.M. Liu, N. Zhang, Y. Yao, H.H. Sun, H. Feng, Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials, J. Hazard. Mater. 262(8) (2013) 428-438. [8] S.H. Ju, S.D. Lu, J.H. Peng, L.B. Zhang, C. Srinivaskakannan, S.H. Guo, W. Li, Removal of cadmium from aqueous solutions using red mud granulated with cement, Trans. Nonferrous Met. Soc. China 22(12) (2012) 3140-3146. [9] G. Power, M. Gräfe, C. Klauber, Bauxite residue issues:I. Current management, disposal and storage practices, Hydrometallurgy 108(1-2) (2011) 33-45. [10] T. Radomirovic, P. Smith, D. Southam, S. Tashi, F. Jones, Crystallization of sodaliteparticles under Bayer-type conditions, Hydrometallurgy 137(5) (2013) 84-91. [11] X.M. Liu, N. Zhang, H.H. Sun, J.X. Zhang, L.T. Li, Structural investigation relating to the cementitious activity of bauxite residue-Red mud, Cem. Concr. Res. 8(41) (2011) 847-853. [12] S.H. Ma, Z.G. Wen, J.N. Chen, S.L. Zhang, An environmentally friendly design for low-grade diasporic-bauxite processing, Miner. Eng. 22(2009) 793-798. [13] P.J. Cresswell,D.J. Milne, Production of alumina, US Pat. 4483830, (1984). [14] X.F. Zhu, T.A. Zhang, Y.X. Wang, G.Z. Lu, W.G. Zhang, C. Wang, A.C. Zhao, Nonisothermal decomposition kinetics of hydrogarnet in sodium carbonate solution, Chin. J. Chem. Eng. 23(2015) 1634-1639. [15] S.Q. Gu, Alumina production technology with high efficiency and low consumption from Chinese bauxite resource, Chin. J. Nonferrous Met. 14(s1) (2004) 91-97(in Chinese). [16] Q.F. Zhao, H.J. Yang, Exploration of lime addition mode in lime Bayer Method, Energy Saving Nonferrous Metall. 19(5) (2002) 19-21(in Chinese). [17] B. Xu, P. Smith, C. Wingate, L.D. Silva, The effect of calcium and temperature on the transformation of sodalite to cancrinite in Bayer digestion, Hydrometallurgy 105(2010) 75-81. [18] R. Zhang, S.L. Zheng, S.H. Ma, Y. Zhang, Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process, J. Hazard. Mater. 189(2011) 827-835. [19] J.M. Mercury, P. Pena, A.H. De Aza, X. Turrillas, I. Sobrados, J. Sanz, Solid-state 27Al and 29Si NMR investigations on Si-substituted hydrogarnets, Acta Mater. 55(4) (2007) 1183-1191. [20] G.A. Lager, J.C. Nipko, C.K. Loong, Inelastic neutron scattering study of the (O4H4) substitution in garnet, Phys. B Condens. Matter 241(20) (1998) 406-408. [21] T.B. Ballaran, A.B. Woodland, Local structure of ferric iron-bearing garnets deduced by IR-spectroscopy, Chem. Geol. 225(3-4) (2006) 360-372. [22] F.C. Hawthorne, Some systematics of the garnet structure, J. Solid State Chem. 37(2) (1981) 157-164. [23] A.J. Locock, An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets, Comput. Geosci. 34(12) (2008) 1769-1780. [24] S.J. Marin, M. O'Keefee, The crystal structure of the hydrogarnet Ba3In2(OD)12, J. Solid State Chem. 87(1) (1990) 173-177. [25] S. Peter, Reactions of lime under high temperature Bayer digestion conditions, Hydrometallurgy 170(2017) 16-23. [26] T.G. Jappy, F.P. Glasser, Synthesis and stability of silica substituted hydrogarnet, Ca3Al2Si3-xO12-4x(OH)4x, Adv. Cem. Res. 4(1991) 1-8. [27] K. Kyritsis, N. Meller, C. Hall, Chemistry and morphology of hydrogarnets formed in cement-based CASH hydroceramics cured at 200° to 350℃, J. Am. Ceram. Soc. 92(2009) 1105-1111. [28] T. Shoji, Ca3Al2(SiO4)3-Ca3Al2(ZO4H4)3 series garnet:composition and stability, J. Mineral. Soc. Jpn. 11(1974) 359-372. [29] G.Y. Zhu, H.Q. Li, S.Q. Li, X.J. Hou, X.R. Wang, Crystallization of calcium silicate at elevated temperatures in highly alkaline system of Na2O-CaO-SiO2-H2O, Chin. J. Chem. Eng. 10(2017) 1539-1544. [30] D.G. Bennett, D. Read, M. Atkins, F.P. Glasser, A thermodynamic model for blended cements. II:Cement hydrate phases; thermodynamic values and modelling studies, J. Nucl. Mater. 190(1992) 315-325. [31] M. Atkins, D.G. Bennett, A.C. Dawes, F.P. Glasser, A. Kindness, D. Read, A thermodynamic model for blended cements, Cem. Concr. Res. 22(1992) 497-502. [32] P. Blanc, X. Bourbon, A. Lassin, E.C. Gaucher, Chemical model for cement-based materials:Thermodynamic data assessment for phases other than C-S-H, Cem. Concr. Res. 40(2010) 1360-1374. [33] T. Matschei, B. Lothenbach, F.P. Glasser, Thermodynamic properties of Portland cement hydrates in the system CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O, Cem. Concr. Res. 37(2007) 1379-1410. [34] R.B. Peppler, L.S. Wells, The system of lime, alumina, and water from 50° to 250℃, J. Res. Natl. Bur. Stand. 52(1954) 75-92. [35] B.Z. Dilnesa, B. Lothenbach, G. Renaudin, A. Wichser, D. Kulik, Synthesis and characterization of hydrogarnet Ca3(AlxFe1-x)2(SiO4)y(OH)4(3-y), Cem. Concr. Res. 59(2014) 96-111. [36] G.Z. Lu, T.A. Zhang, C.Z. Zheng, X.F. Zhu, W.G. Zhang, Y.X. Wang, The influence of the silicon saturation coefficient on a calcification-carbonation method for clean and efficient use of bauxite, Hydrometallurgy 174(2017) 97-104. [37] S.W. Bi, H.Y. Yu, Alumina Production Process, Chemical Industry Press, Beijing, 2006, pp. 67-69(in Chinese). [38] R.A. Abdulvaliyev, A. Akcil, S.V. Gladyshev, E.A. Tastanov, K.O. Beisembekova, N.K. Akhmadiyeva, H. Deveci, Gallium and vanadium extraction from red mud of Turkish alumina refinery plant:Hydrogarnet process, Hydrometallurgy 157(2015) 72-77. [39] Y.X. Wang, T.A. Zhang, G.Z. Lyu, F.F. Guo, W.G. Zhang, Y.H. Zhang, Recovery of alkali and alumina from bauxite residue (red mud) and complete reuse of the treated residue, J. Clean. Prod. 188(2018) 456-465. [40] Z. Zhao, H.M. Long, X.B. Li, Y.Q. Fan, Z. Han, Precipitation of vanadium from Bayer liquor with lime, Hydrometallurgy 115-116(2012) 52-56. [41] R.B. Li, T.A. Zhang, Y. Liu, G.Z. Lu, L.Q. Xie, Calcification-carbonation method for red mud processing, J. Hazard. Mater. 316(2016) 94-101. [42] X.F. Zhu, T.A. Zhang, Y.X. Wang, G.Z. Lu, W.G. Zhang, C. Wang, A.C. Zhao, Nonisothermal decomposition kinetics of hydrogarnet in sodium carbonate solution, Chin. J. Chem. Eng. 23(2015) 1634-1639. |