[1] S. Srivastava, K. Godiwalla, M. Banerjee, Fuel ash corrosion of boiler and superheater tubes, J. Mater. Sci. 32(4) (1997) 835-849. [2] S. Zheng, Development of preventing boiler tube failure (BTF) at abroad and revelation, Power Syst. Eng. 20(3) (2004) 11-12. [3] Y. Li, J. Lu, Z. Yang, M. Zhu, Y. Gu, Research progress on high temperature corrosion of flue gas side of coal-fired boiler, Corros. Sci. Prot. Technol. 28(2) (2016) 167-172(in Chinese). [4] L. An, P. Tong, G. Jiang, Y. Wang, C. Dong, T. Peng, Cause analysis about leakage of "four tube kinds" in boilers, Therm. Power Gen. 37(6) (2008) 42-44(in Chinese). [5] W.D. Halstead, E. Raask, The Behaviour of Sulphur and Chlorine Compounds in Pulverized-Coal-Fired Boilers, 1969. [6] B. Yao, Study on Combustion Operation of Large Low Volatile Coal Boilers, Huazhong University of Science and Technology, 2005(in Chinese). [7] Y. Yuan, D. Xiang, Survey and study on combustion performance of W-flame double arch boiler, Electricity 1(2000) 23-30(in Chinese). [8] C. Cain, W. Nelson, Corrosion of superheaters and reheaters of pulverized-coalfired boilers. II, J. Eng. Gas Turbines Power 83(83:4) (1961) 194-201. [9] R. Bender, M. Schütze, The role of alloying elements in commercial alloys for corrosion resistance in oxidizing-chloridizing atmospheres. Part I:Literature evaluation and thermodynamic calculations on phase stabilities, Mater. Corros. 54(8) (2015) 567-586. [10] R. Bender, M. Schütze, The role of alloying elements in commercial alloys for corrosion resistance in oxidizing-chloridizing atmospheres. Part II:Experimental investigations, Mater. Corros. 54(9) (2015) 652-686. [11] A.B. Hedley, Factors Affecting the Formation of Sulphur Trioxide in Flame Gases, 1967. [12] A. Hernas, M. Imosa, B. Formanek, J. Cizner, High-temperature chlorine-sulfur corrosion of heat-resisting steels, J. Mater. Process. Technol. 157(4) (2004) 348-353. [13] J. Liu, J. Wang, Y. Han, X. Li, Y. Sun, The cause and preventive measure of the high temperature corrosion of water cooled wall tube metals in a 100 MW boiler burning lean coal, Energy Conserv. Technol. 2(2002) 15-17(in Chinese). [14] K. Schofield, A new method to minimize high-temperature corrosion resulting from alkali sulfate and chloride deposition in combustion systems. I. Tungsten saltsy†, Energy Fuel 17(1) (2002) 893-901. [15] D. Schettler, K. Hübner, K. Görner, On-line monitoring of high-temperature corrosion from superheater materials:KOMET 650-Sub-project 2.2, Vgb Powertech 83(6) (2003) 94-99. [16] Z. Wu, Z. Wang, X. Zhang, Z. Yang, J. Liu, G. Wang, W. Yao, Experimental of high temperature corrosion of heating surface in ultra-supercritical boilers[J], Therm. Power Gener. 47(3) (2018) 123-127(in Chinese). [17] G. Stein-Brzozowska, D.M. Flórez, J. Maier, G. Scheffknecht, Nickel-base superalloys for ultra-supercritical coal-fired power plants:Fireside corrosion. Laboratory studies and power plant exposures, Fuel 108(11) (2013) 521-533. [18] A. Fry, B. Adams, K. Davis, D. Swensen, S. Munson, W. Cox, An investigation into the likely impact of oxy-coal retrofit on fire-side corrosion behavior in utility boilers, Int. J. Greenh. Gas Control 5(2011) S179-S185. |