[1] A.F. Cohen, L. Ashby, D. Crowley, G. Land, A.W. Peck, A.A. Miller, Lamotrigine (BW430C), a potential anticonvulsant. Effects on the central nervous system in comparison with phenytoin and diazepam, Br. J. Clin. Pharmacol. 20(1985) 619-629. [2] A. Farjami, A. Jouyban, Lamotrigine solubility in some nonaqueous solvent mixtures at 298.2 K, J. Chem. Eng. Data 60(2015) 2490-2494. [3] M.A. Rogawski, in:R.H. Levy, R.H. Mattson, B.S. Meldrum, E. Perucca (Eds.), Principles of Antiepileptic Drug Action, 5th ed.Lippincot William and Wilkins, Philadelphia 2002, pp. 3-22. [4] P. Sriamornsak, K. Burapapadh, Characterization of recrystallized itraconazole prepared by cooling and anti-solvent crystallization, Asian J. Biomed. Pharm. Sci. 10(2015) 230-238. [5] A.C. Van der Vossen, I. van der Velde, O.S.N.M. Smeets, D.J. Postma, M. Eckhardt, A. Vermes, B.C.P. Koch, A.G. Vulto, L.M. Hanff, Formulating a poorly water soluble drug into an oral solution suitable for paediatric patients; lorazepam as a model drug, Eur. J. Pharm. Sci. 100(2017) 205-210. [6] M. Khoubnasabjafari, A. Shayanfar, F. Martinez, W.E. Acree Jr., A. Jouyban, Generally trained models to predict solubility of drugs in carbitol+water mixtures at various temperatures, J. Mol. Liq. 219(2016) 435-438. [7] A.D. Khan, L. Singh, Various techniques of bioavailability enhancement:a review, J. Drug Deliv. Ther. 6(2016) 34-41. [8] T.C. Bai, G.B. Yan, J. Hu, Solubility of Silybin in aqueous dextran solutions, J. Chem. Eng. Data 50(2005) 1596-1601. [9] H. Shekaari, M.T. Zafarani-Moattar, S.N. Mirheydari, Thermodynamic study of aspirin in the presence of ionic liquid, 1-hexyl-3-methylimidazolium bromide in acetonitrile at T=(288.15 to 318.15) K, J. Mol. Liq. 209(2015) 138-148. [10] M.J. Earle, K.R. Seddon, in:M.A. Abraham, L. Moens (Eds.), Clean Solvents, Alternative Media for Chemical Reactions and Processing, American Chemical Society, Washibgton 2002, pp. 10-25. [11] A.S. Larsen, J.D. Holbrey, F.S. Tham, C.A. Reed, Designing ionic liquids:imidazolium melts with inert carborane anions, J. Am. Chem. Soc. 122(2000) 7264-7272. [12] J.-H. An, W.-S. Kim, Antisolvent crystallization using ionic liquids as solvent and Antisolvent for polymorphic design of active pharmaceutical ingredient, Cryst. Growth Des. 13(2013) 31-39. [13] B.C. Ranu, S. Banerjee, Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid,[bmIm]OH, in michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles, Org. Lett. 7(2005) 3049-3052. [14] J. Fuller, R.T. Carlin, R.A. Osteryoung, The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate:electrochemical couples and physical properties, J. Electrochem. Soc. 144(1997) 3881-3886. [15] M. Palacio, B. Bhushan, A review of ionic liquids for green molecular lubrication in nanotechnology, Tribol. Lett. 40(2010) 247-268. [16] B.K. Liu, N. Wang, Z.C. Chen, Q. Wu, X.F. Lin, Markedly enhancing lipase-catalyzed synthesis of nucleoside drugs' ester by using a mixture system containing organic solvents and ionic liquid, Bioorg. Med. Chem. Lett. 16(2006) 3769-3771. [17] W.M. Reichert, J.D. Holbrey, K.B. Vigour, T.D. Morgan, G.A. Broker, R.D. Rogers, Approaches to crystallization from ionic liquids:complex solvents-complex results, or, a strategy for controlled formation of new supramolecular architectures? Chem. Comm. (46) (2006) 4767-4779. [18] M. Cruz-Vera, R. Lucena, S. Cárdenas, M. Valcárcel, Ionic liquid-based dynamic liquid-phase microextraction:application to the determination of antiinflammatory drugs in urine samples, J. Chromatogr. A 1202(2008) 1-7. [19] H. Shekaari, M.T. Zafarani-Moattar, S.N. Mirheydari, Effect of 1-butyl-3-methylimidazolium ibuprofenate as an active pharmaceutical ingredient ionic liquid (API-IL) on the thermodynamic properties of glycine and L-alanine in aqueous solutions at different temperatures, J. Solut. Chem. 45(2016) 624-663. [20] H. Shekaari, M.T. Zafarani-Moattar, S.N. Mirheydari, Conductometric analysis of 1-butyl-3-methylimidazolium ibuprofenate as an active pharmaceutical ingredient ionic liquid (API-IL) in the aqueous amino acids solutions, J. Chem. Thermodyn. 103(2016) 165-175. [21] I. Marrucho, L. Branco, L. Rebelo, Ionic liquids in pharmaceutical applications, Annu. Rev. Chem. Biomol. Eng. 5(2014) 527-546. [22] W.L. Hough, M. Smiglak, H. Rodríguez, R.P. Swatloski, S.K. Spear, D.T. Daly, J. Pernak, J.E. Grisel, R.D. Carliss, M.D. Soutullo, The third evolution of ionic liquids:active pharmaceutical ingredients, New J. Chem. 31(2007) 1429-1436. [23] K. Smith, R. Bridson, G. Leeke, Solubilities of pharmaceutical compounds in ionic liquids, J. Chem. Eng. Data 56(2011) 2039-2043. [24] C.I. Melo, R. Bogel-Łukasik, M.N. da Ponte, E. Bogel-Łukasik, Ammonium ionic liquids as green solvents for drugs, Fluid Phase Equilib. 338(2013) 209-216. [25] R.A. Faria, E. Bogel-Łukasik, Solubilities of pharmaceutical and bioactive compounds in trihexyl (tetradecyl) phosphonium chloride ionic liquid, Fluid Phase Equilib. 397(2015) 18-25. [26] R.A. Faria, M.N. da Ponte, E. Bogel-Łukasik, Solubility studies on the system of trihexyl (tetradecyl) phosphonium bis[(trifluoromethyl) sulfonyl] amide) ionic liquid and pharmaceutical and bioactive compounds, Fluid Phase Equilib. 385(2015) 1-9. [27] J. Resende de Azevedo, J.-J. Letourneau, F. Espitalier, M.I.s. Ré, Solubility of a new cardioactive prototype drug in ionic liquids, J. Chem. Eng. Data 59(2014) 1766-1773. [28] A. Mehrdad, A.H. Miri, Influence of 1-butyl-3-methyl imidazolium bromide, ionic liquid as co-solvent on aqueous solubility of acetaminophen, J. Mol. Liq. 221(2016) 1162-1167. [29] A. Mehrdad, A.H. Miri, Aqueous solubility of acetaminophen in the presence of 1-hexyl-3-methyl imidazolium bromide, ionic liquid as co-solvent, Fluid Phase Equilib. 425(2016) 51-56. [30] A.D. dos Santos, A.R. Morais, C. Melo, R. Bogel-Łukasik, E. Bogel-Łukasik, Solubility of pharmaceutical compounds in ionic liquids, Fluid Phase Equilib. 356(2013) 18-29. [31] A. Pal, B. Kumar, Densities, speeds of sound and 1H NMR spectroscopic studies for binary mixtures of 1-hexyl-3-methylimidazolium based ionic liquids with ethylene glycol monomethyl ether at temperature from T=(288.15-318.15) K, Fluid Phase Equilib 334(2012) 157-165. [32] H. Patel, Z.S. Vaid, U.U. More, S.P. Ijardar, N.I. Malek, Thermophysical, acoustic and optical properties of binary mixtures of imidazolium based ionic liquids+polyethylene glycol, J. Chem. Thermodyn. 99(2016) 40-53. [33] J.G. Li, Y.F. Hu, S.F. Sun, Y.S. Liu, Z.C. Liu, Densities and dynamic viscosities of the binary system (water+1-hexyl-3-methylimidazolium bromide) at different temperatures, J. Chem. Thermodyn. 42(7) (2010) 904-908. [34] N.V. Sastry, N.M. Vaghela, P.M. Macwan, Densities, excess molar and partial molar volumes for water+1-butyl-or, 1-hexyl-or, 1-octyl-3-methylimidazolium halide room temperature ionic liquids at T=(298.15 and 308.15) K, J. Mol. Liq. 180(2013) 12-18. [35] H. Shekaari, M.T. Zafarani-Moattar, M. Niknam, Thermodynamic behavior of thiophene with octane, 1-hexyl-3-methylimidazolium bromide, or 1-octyl-3-methylimidazolium bromide in dilute region at T=(288.15 to 303.15) K, J. Chem. Thermodyn. 97(2016) 100-112. [36] H. Shekaari, M.T. Zafarani-Moattar, S.N. Mirheydari, Volumetric, ultrasonic and viscometric studies of aspirin in the presence of 1-octyl-3-methylimidazolium bromide ionic liquid in acetonitrile solutions at T=(288.15-318.15) K, Z. Phys. Chem. 230(2016) 1773-1799. [37] F. Sardari, A. Jouyban, Solubility of nifedipine in ethanol+water and propylene glycol+water mixtures at 293.2 to 313.2 K, Ind. Eng. Chem. Res. 52(2013) 14353-14358. [38] R. Li, H. Yan, Z. Wang, J. Gong, Correlation of solubility and prediction of the mixing properties of ginsenoside compound K in various solvents, Ind. Eng. Chem. Res. 51(2012) 8141-8148. [39] G.A. Rodríguez, D.R. Delgado, F. Martínez, A. Jouyban, W.E. Acree, Solubility of naproxen in ethyl acetate+ethanol mixtures at several temperatures and correlation with the Jouyban-Acree model, Fluid Phase Equilib. 320(2012) 49-55. [40] D.R. Delgado, G.A. Rodríguez, A.R. Holguín, F. Martínez, A. Jouyban, Solubility of sulfapyridine in propylene glycol+water mixtures and correlation with the Jouyban-Acree model, Fluid Phase Equilib. 341(2013) 86-95. [41] A. Fathi-Azarbayjani, M. Abbasi, J. Vaez-Gharamaleki, A. Jouyban, Measurement and correlation of deferiprone solubility:investigation of solubility parameter and application of van't Hoff equation and Jouyban-Acree model, J. Mol. Liq. 215(2016) 339-344. [42] A. Jouyban, O. Azarmir, S. Mirzaei, D. Hassanzadeh, T. Ghafourian, W.E. Acree Jr, A. Nokhodchi, Solubility prediction of paracetamol in water-ethanol-propylene glycol mixtures at 25 and 30 C using practical approaches, Chem. Pharm. Bull. 56(2008) 602-606. [43] S. Ahmadian, V. Panahi-Azar, M.A. Fakhree, W.E. Acree Jr., A. Jouyban, Solubility of phenothiazine in water, ethanol, and propylene glycol at (298.2 to 338.2) K and their binary and ternary mixtures at 298.2 K, J. Chem. Eng. Data 56(2011) 4352-4355. [44] R.A. Granberg, Å.C. Rasmuson, Solubility of paracetamol in pure solvents, J. Chem. Eng. Data 44(1999) 1391-1395. [45] J. Ananthaswamy, G. Atkinson, Thermodynamics of concentrated electrolyte mixtures. 4. Pitzer-Debye-Hueckel limiting slopes for water from 0 to 100. degree. C and from 1 atm to 1 kbar, J. Chem. Eng. Data 29(1984) 81-87. [46] C.C. Chen, H.I. Britt, J. Boston, L. Evans, Local composition model for excess Gibbs energy of electrolyte systems. Part I:single solvent, single completely dissociated electrolyte systems, AIChE J. 28(1982) 588-596. [47] H. Renon, J. Prausnitz, Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures, Ind. Eng. Chem. Process. Des. Dev. 8(1969) 413-419. [48] G. Bollas, C.-C. Chen, P. Barton, Refined electrolyte-NRTL model:activity coefficient expressions for application to multi-electrolyte systems, AIChE J. 54(2008) 1608-1624. [49] E. Zhao, M. Yu, R.E. Sauvé, M.K. Khoshkbarchi, Extension of the Wilson model to electrolyte solutions, Fluid Phase Equilib. 173(2000) 161-175. [50] A. Haghtalab, K. Peyvandi, Electrolyte-UNIQUAC-NRF model for the correlation of the mean activity coefficient of electrolyte solutions, Fluid Phase Equilib. 281(2009) 163-171. [51] G. Maurer, J. Prausnitz, On the derivation and extension of the UNIQUAC equation, Fluid Phase Equilib. 2(1978) 91-99. [52] J. Yousefi Seyf, A. Haghtalab, Measurement and thermodynamic modeling of the solubility of lamotrigine, deferiprone, cefixime trihydrate, and cephalexin monohydrate in different pure solvents from 283.1 to 323.1 K, J. Chem. Eng. Data 61(2016) 2170-2178. [53] J. Manrique, F. Martinez, Solubility of ibuprofen in some ethanol+water cosolvent mixtures at several temperatures, Lat. Am. J. Pharm. 26(2007) 344. [54] R.G. Sotomayor, A.R. Holguín, A. Romdhani, F. Martínez, A. Jouyban, Solution thermodynamics of piroxicam in some ethanol+water mixtures and correlation with the Jouyban-Acree model, J. Solut. Chem. 42(2013) 358-371. [55] F. Bentiss, M. Lebrini, M. Lagrenée, Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2, 5-bis (n-thienyl)-1, 3, 4-thiadiazoles/hydrochloric acid system, Corros. Sci. 47(2005) 2915-2931. [56] Y.J. Manrique, D.P. Pacheco, F. Martínez, Thermodynamics of mixing and solvation of ibuprofen and naproxen in propylene glycol+water cosolvent mixtures, J. Solut. Chem. 37(2008) 165-181. [57] J.D. Dunitz, Win some, lose some:enthalpy-entropy compensation in weak intermolecular interactions, Chem. Biol. 2(1995) 709-712. |