[1] D. Bhatt, K.C. Maheria, J. Parikh, Studies on surfactant-ionic liquid interaction on clouding behavior and evaluation of thermodynamic parameters, J. Surfactant Deterg. 16(2013) 547-557. [2] D. Kumar, M.A. Rub, Interaction of ninhydrin with chromium-glycylglycine complex in the presence of dimeric gemini surfactants, J. Mol. Liq. 250(2018) 329-334. [3] D. Kumar, M.A. Rub, Studies of interaction between ninhydrin and Gly-Leu dipeptide:influence of cationic surfactants (m-s-m type gemini), J. Mol. Liq. 269(2018) 1-7. [4] M. Fresta, S. Guccione, A.R. Beccari, P.M. Furneri, G. Puglisi, Combining molecular modeling with experimental methodologies:mechanism of membrane permeation and accumulation of ofloxacin, Bioorg. Med. Chem. 10(2002) 3871-3889. [5] J.N. Israelachvili, Intermolecular and Surface Forces, Second ed. John Wiley & Sons, New York, 1995. [6] S.S. Shah, S.W.H. Shah, K. Naeem, P. Somasundaran, A. Hubbard, Surfactant-dye Aggregate, Encyclopedia of Surface and Colloid Science, Marcel Dekker, Inc, 2006. [7] J.H. Fendler, E.J. Fendler, Catalysis in Micellar and Macromolecular Systems, Academic Press, New York, 1975. [8] M.A. Hoque, M.M. Alam, M.R. Molla, S. Rana, M.A. Rub, M.A. Halim, M.A. Khan, F. Akhtar, Interaction of cetyltrimethylammonium bromide with drug in aqueous/electrolyte solution:A conductometric and molecular dynamics method study, Chin. J. Chem. Eng. 26(2018) 159-167. [9] D. Attwood, A.T. Florence, Surfactant Systems, their Chemistry, Pharmacy and Biology, Chapman and Hall, New York, 1983. [10] M.J. Rosen, Surfactants and Interfacial Phenomena, 3rd edn Wiley, New York, 2004. [11] D. Kumar, M.A. Rub, Synthesis and characterization of dicationic gemini surfactant micelles and their effect on the rate of ninhydrin-copper-peptide complex reaction, Tenside Surfactant Deterg. 55(2018) 78-84. [12] S. Yan, A. Li, H. Zheng, M. Luo, X. Xing, Effects of ionic surfactants on bacterial luciferase and α-amylase, Chin. J. Chem. Eng. 17(2009) 829-834. [13] M. Rahman, M.A. Hoque, M.A. Khan, M.A. Rub, A.M. Asiri, Effect of different additives on the phase separation behavior and thermodynamics of p-tert-alkylphenoxy poly (oxyethylene) ether in absence and presence of drug, Chin. J. Chem. Eng. 26(2018) 1110-1118. [14] D. Kumar, M.A. Rub, Aggregation behavior of amphiphilic drug promazine hydrochloride and sodium dodecylbenzenesulfonate mixtures under the influence of NaCl/urea at various concentration and temperatures, J. Phys. Org. Chem. 29(2016) 394-405. [15] F. Khan, M.S. Sheikh, M.A. Rub, N. Azum, A.M. Asiri, Antidepressant drug amitriptyline hydrochloride (AMT) interaction with anionic surfactant sodium dodecyl sulfate in aqueous/brine/urea solutions at different temperatures, J. Mol. Liq. 222(2016) 1020-1030. [16] M.A. Rub, N. Azum, A.M. Asiri, Interaction of cationic amphiphilic drug nortriptyline hydrochloride with TX-100 in aqueous and urea solutions and the studies of physicochemical parameters of the mixed micelles, J. Mol. Liq. 218(2016) 595-603. [17] M.A. Rub, N. Azum, A.M. Asiri, Binary mixtures of sodium salt of ibuprofen and selected bile salts:Interface, micellar, thermodynamic, and spectroscopic study, J. Chem. Eng. Data 62(2017) 3216-3228. [18] M.A. Rub, N. Azum, F. Khan, A.M. Asiri, Aggregation of sodium salt of ibuprofen and sodium taurocholate mixture in different media:A tensiometry and fluorometry study, J. Chem. Thermodyn. 121(2018) 199-210. [19] F. Khan, M.A. Rub, N. Azum, A.M. Asiri, Mixtures of antidepressant amphiphilic drug imipramine hydrochloride and anionic surfactant:Micellar and thermodynamic investigation, J. Phys. Org. Chem. 31(2018), e3812. [20] D. Kumar, N. Azum, M.A. Rub, A.M. Asiri, Aggregation behavior of sodium salt of ibuprofen with conventional and gemini surfactant, J. Mol. Liquids 262(2018) 86-96. [21] M.R. Molla, M.A. Rub, A. Ahmad, M.A. Hoque, Interaction between tetradecyltrimethylammonium bromide and benzyldimethylhexadecylammonium chloride in aqueous/urea solution at various temperatures:An experimental and theoretical investigation, J. Mol. Liq. 238(2017) 62-70. [22] M.R. Molla, S. Rana, M.A. Rub, A. Ahmed, M.A. Hoque, Conductometric probe analysis of the effect of benzyldimethylhexadecylammonium chloride on the micellization behaviour of dodecyltrimethylammonium bromide in aqueous/urea solution:Investigation of concentration and temperature effect, J. Surfactant Deterg. 21(2018) 231-246. [23] M.A. Rub, F. Khan, M.S. Sheikh, N. Azum, A.M. Asiri, Tensiometric, fluorescence and 1H NMR study of mixed micellization of non-steroidal anti-inflammatory drug sodium salt of ibuprofen in the presence of non-ionic surfactant in aqueous/urea solutions, J. Chem. Thermodyn. 96(2016) 196-207. [24] T.S. Banipal, R. Kaur, P.K. Banipal, Effect of sodium chloride on the interactions of ciprofloxacin hydrochloride with sodium dodecyl sulfate and hexadecyl trimethylammonium bromide:Conductometric and spectroscopic approach, J. Mol. Liq. 255(2018) 113-121. [25] A.M. Khan, S.S. Shah, Fluorescence spectra behavior of ciprofloxacin HCl in aqueous medium and its interaction with sodium dodecyl sulfate, J. Dispers. Sci. Technol. 30(2009) 997-1002. [26] A.M. Khan, S.S. Shah, pH induced partitioning and interactions of ciprofloxacin hydrochloride with anionic surfactant sodium dodecyl sulfate using ultraviolet and Fourier transformed infrared spectroscopy study, J. Dispers. Sci. Technol. 30(2009) 1247-1254. [27] Z. Huang, S. Parikh, W.P. Fish, Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior, Int. J. Pharm. 535(2018) 350-359. [28] U.E. Osonwa, J.I. Ugochukwu, E.E. Ajaegbu, K.I. Chukwu, R.B. Azevedo, C.O. Esimone, Enhancement of antibacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate, Bull. Fac. Pharm. Cairo Univ. 55(2017) 233-237. [29] Z.-C. Shang, P.-G. Yi, Q.-S. Yu, R.-S. Lin, Reaction mechanism between ciprofloxacin hydrochloride and bovine serum albumin, Acta Phys. -Chim. Sin. 17(2001) 48-52. [30] S. Aktar, M.R. Molla, S. Mahbub, M.A. Rub, M.A. Hoque, D.M. Shafiqul Islama, Effect of temperature and salt/alcohol on the interaction of tetradecyltrimethylammonium bromide with moxifloxacin hydrochloride:A multitechnique approach, J. Dispers. Sci. Technol. 40(4) (2019) 574-586. [31] F. Akhtar, M.A. Hoque, M.A. Khan, Interaction of cefadroxyl monohydrate with hexadecyltrimethyl ammonium bromide and sodium dodecyl sulfate, J. Chem. Thermodyn. 40(2008) 1082-1086. [32] M.K. Al-Muhanna, M.A. Rub, N. Azum, S.B. Khan, A.M. Asiri, Self-aggregation phenomenon of promazine hydrochloride under the influence of sodium cholate/sodium deoxycholate in aqueous medium, J. Dispers. Sci. Technol. 37(2016) 450-463. [33] M. Rahman, M.A. Khan, M.A. Rub, M.A. Hoque, Effect of temperature and salts on the interaction of cetyltrimethylammonium bromide with ceftriaxone sodium trihydrate drug, J. Mol. Liq. 223(2016) 716-724. [34] M.A. Hoque, F. Ahmed, M.A. Halim, M.R. Molla, M.A. Rahman, S. Rana, M.A. Rub, Influence of salt and temperature on the interaction of bovine serum albumin with cetylpyridinium chloride:Insights from experimental and molecular dynamics simulation, J. Mol. Liq. 260(2018) 121-130. [35] M.A. Hoque, M.M. Alam, M.R. Molla, S. Rana, M.A. Rub, M.A. Halim, M.A. Khan, A. Ahmed, Effect of salts and temperature on the interaction of levofloxacin hemihydrate drug with cetyltrimethylammonium bromide:Conductometric and molecular dynamics investigations, J. Mol. Liq. 244(2017) 512-520. [36] M.A. Hoque, M.O.F. Patoary, M.R. Molla, M.A. Halim, M.A. Khan, M.A. Rub, Interaction between cetylpyridinium chloride and amino acids:a conductometric and computational method study, J. Dispers. Sci. Technol. 38(2017) 1578-1587. [37] S. Mahbub, M.A. Rub, M.A. Hoque, M.A. Khan, Mixed micellization study of dodecyltrimethylammonium chloride and cetyltrimethylammonium bromide mixture in aqueous/urea medium at different temperatures:Theoretical and experimental view, J. Phys. Org. Chem. 31(2018), e3872. [38] M.A. Hoque, S. Mahbub, M.A. Rub, S. Rana, M.A. Khan, Experimental and theoretical investigation of micellization behavior of sodium dodecyl sulfate with cetyltrimethylammonium bromide in aqueous/urea solution at various temperatures, Korean J. Chem. Eng. 35(2018) 2269-2282. [39] F. Jalali, M. Shamsipur, N. Alizadeh, Conductance study of the thermodynamics of micellization of 1-hexadecylpyridinium bromide in (water+co-solvent), J. Chem. Thermodyn. 32(2000) 755-765. [40] M.A. Hoque, M.A. Khan, M.D. Hossain, Interaction of cefalexin monohydrate with cetyldimethylethylammonium bromide, J. Chem. Thermodyn. 60(2013) 71-75. [41] D. Kumar, S. Hidayathulla, M.A. Rub, Association behavior of a mixed system of the antidepressant drug imipramine hydrochloride and dioctyl sulfosuccinate sodium salt:Effect of temperature and salt, J. Mol. Liq. 271(2018) 254-264. [42] M.A. Hoque, M.-O.-F. Patoary, M.M. Rashid, M.R. Molla, M.A. Rub, Physicochemical investigation of mixed micelle formation between tetradecyltrimethylammonium bromide and dodecyltrimethylammonium chloride in water and aqueous solutions of sodium chloride, J. Solut. Chem. 46(2017) 682-703. [43] G. Para, E. Jarek, P. Warszynski, The Hofmeister series effect in adsorption of cationic surfactants-theoretical description and experimental results, Adv. Colloid Interf. Sci. 122(2006) 39-55. [44] J. Mata, D. Varade, P. Bahadur, Aggregation behavior of quaternary salt based cationic surfactants, Thermochim. Acta 428(2005) 147-155. [45] K. Mukherjee, D.C. Mukherjee, S.P. Moulik, Thermodynamics of micellization of aerosol OT in binary mixtures of water, formamide, ethylene glycol, and dioxane, J. Phys. Chem. 98(1994) 4713-4718. [46] D. Kumar, M.A. Rub, Effect of anionic surfactant and temperature on micellization behavior of promethazine hydrochloride drug in absence and presence of urea, J. Mol. Liq. 238(2017) 389-396. [47] D.C. Robins, I.L. Thomas, The effect of counterions on micellar properties of 2 dodecylaminoethanol salts:I. Surface tension and electrical conductance studies, J. Colloid Interface Sci. 26(1968) 407-414. [48] S. Chauhan, S. Kumari, K. Singh, Conductometric and fluorescence probe analysis on molecular interactions between cationic surfactants in aqueous medium of glycyl dipeptide:Concentration and temperature effect, J. Chem. Thermodyn. 105(2017) 337-344. [49] M.A.R. Khan, M.R. Amin, M. Rahman, M.A. Rub, M.A. Hoque, M.A. Khan, A.M. Asiri, Influence of different additives on the clouding nature and thermodynamic behavior of tween 80 solution in the absence and presence of the amikacin sulfate drug, J. Chem. Eng. Data 64(2019) 668-675. [50] I. Jelesarov, H.R. Bosshard, Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition, J. Mol. Recognit. 12(1999) 3-18. [51] S.K. Shivaji, A.K. Rakshit, Investigation of the properties of decaoxyethylene ndodecyl ether, C12E10, in the aqueous sugar-rich region, J. Surfactant Deterg. 7(2004) 305-316. |