[1] T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99(1999) 2071-2084. [2] S. Sarangi, S. Raju, S. Balasubramanian, Molecular dynamics simulations of ionic liquid-vapour interfaces:Effect of cation symmetry on structure at the interface, Phys. Chem. Chem. Phys. 13(2011) 2714-2722. [3] N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev. 37(2008) 123-150. [4] B. Dong, N. Li, L. Zheng, L. Yu, T. Inoue, Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution, Langmuir 23(2007) 4178-4182. [5] M. Yousefi, A. Naseri, M. Abdouss, A.M. Beigi, Synthesis and characterization of eight hydrophilic imidazolium-based ionic liquids and their application on enhanced oil recovery, J. Mol. Liq. 248(2017) 370-377. [6] P. Pillai, A. Kumar, A. Mandal, Mechanistic studies of enhanced oil recovery by imidazolium-based ionic liquids as novel surfactants, J. Ind. Eng. Chem. 63(2018) 262-274. [7] S. Sakthivel, S. Velusamy, V.C. Nair, T. Sharma, J.S. Sangwai, Interfacial tension of crude oil-water system with imidazolium and lactam-based ionic liquids and their evaluation for enhanced oil recovery under high saline environment, Fuel 191(2017) 239-250. [8] Y. Kong, B. Hu, Y. Guo, Y. Wu, Effect of ionic liquids on stability of O/W miniemulsion for application of low emission coating products, Chin. J. Chem. Eng. 24(2016) 196-201. [9] C. Zhang, L. Zhu, J. Wang, J. Wang, T. Zhou, Y. Xu, C. Cheng, The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio), Ecotoxicol. Environ. Saf. 140(2017) 235-240. [10] K.J. Kulacki, G.A. Lamberti, Toxicity of imidazolium ionic liquids to freshwater algae, Green Chem. 10(2008) 104-110. [11] H. Vatanparast, A. Samiee, A. Bahramian, A. Javadi, Surface behavior of hydrophilic silica nanoparticle-SDS surfactant solutions:I. Effect of nanoparticle concentration on foamability and foam stability, Colloids Surf. A Physicochem. Eng. Asp. 513(2017) 430-441. [12] P. Esmaeilzadeh, N. Hosseinpour, A. Bahramian, Z. Fakhroueian, S. Arya, Effect of ZrO2 nanoparticles on the interfacial behavior of surfactant solutions at air-water and n-heptane-water interfaces, Fluid Phase Equilib. 361(2014) 289-295. [13] T. Fereidooni Moghadam, S. Azizian, Effect of ZnO nanoparticle and hexadecyltrimethylammonium bromide on the dynamic and equilibrium oil-water interfacial tension, J. Phys. Chem. B 118(2014) 1527-1534. [14] Y. Kazemzadeh, S. Shojaei, M. Riazi, M. Sharifi, Review on application of nanoparticles for EOR purposes:A critical review of the opportunities and challenges, Chin. J. Chem. Eng. 27(2) (2019) 237-246. [15] S. Velusamy, S. Sakthivel, J.S. Sangwai, Effect of imidazolium-based ionic liquids on the interfacial tension of the alkane-water system and its influence on the wettability alteration of quartz under saline conditions through contact angle measurements, Ind. Eng. Chem. Res. 56(2017) 13521-13534. [16] S. Sakthivel, S. Velusamy, R.L. Gardas, J.S. Sangwai, Adsorption of aliphatic ionic liquids at low waxy crude oil-water interfaces and the effect of brine, Colloids Surf. A Physicochem. Eng. Asp. 468(2015) 62-75. [17] S. Sakthivel, P.K. Chhotaray, S. Velusamy, R.L. Gardas, J.S. Sangwai, Synergistic effect of lactam, ammonium and hydroxyl ammonium based ionic liquids with and without NaCl on the surface phenomena of crude oil/water system, Fluid Phase Equilib. 398(2015) 80-97. [18] S. Asadabadi, J. Saien, Effects of pH and salinity on adsorption of different imidazolium ionic liquids at the interface of oil-water, Colloids Surf. A Physicochem. Eng. Asp. 489(2016) 36-45. [19] A.Z. Hezave, S. Dorostkar, S. Ayatollahi, M. Nabipour, B. Hemmateenejad, Dynamic interfacial tension behavior between heavy crude oil and ionic liquid solution (1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]+distilled or saline water/heavy crude oil)) as a new surfactant, J. Mol. Liq. 187(2013) 83-89. [20] A. Zeinolabedini Hezave, S. Dorostkar, S. Ayatollahi, M. Nabipour, B. Hemmateenejad, Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system, Fluid Phase Equilib. 360(2013) 139-145. [21] J. Saien, S. Hashemi, Long chain imidazolium ionic liquid and magnetite nanoparticle interactions at the oil/water interface, J. Pet. Sci. Eng. 160(2018) 363-371. [22] J. Saien, A.M. Gorji, Simultaneous adsorption of CTAB surfactant and magnetite nanoparticles on the interfacial tension of n-hexane-water, J. Mol. Liq. 242(2017) 1027-1034. [23] S. Zhang, X. Lu, J. Wu, W. Tong, Q. Lei, W. Fang, Interfacial tensions for system of n-heptane+water with quaternary ammonium surfactants and additives of NaCl or C2-C4 alcohols, J. Chem. Eng. Data 59(2014) 860-868. [24] N.K. Jha, S. Iglauer, J.S. Sangwai, Effect of monovalent and divalent salts on the interfacial tension of n-heptane against aqueous anionic surfactant solutions, J. Chem. Eng. Data 63(2018) 2341-2350. [25] A. Goebel, K. Lunkenheimer, Interfacial tension of the water/n-alkane interface, Langmuir 13(1997) 369-372. [26] J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction, Chem. Commun. (1998) 1765-1766. [27] L.P. Ramirez, K. Landfester, Magnetic polystyrene nanoparticles with a high magnetite contentobtained byminiemulsionprocesses, Macromol. Chem. Phys.204(2003)22-31. [28] L.S. Zhong, J.S. Hu, H.P. Liang, A.M. Cao, W.G. Song, L.J. Wan, Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment, Adv. Mater. 18(2006) 2426-2431. [29] P. Faria, J. Orfao, M. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res. 38(2004) 2043-2052. [30] S. Rajput, C.U. Pittman, D. Mohan, Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water, J. Colloid Interface Sci. 468(2016) 334-346. [31] W. Yu, H. Xie, A review on nanofluids:Preparation, stability mechanisms, and applications, J. Nanomater. 2012(2012) 1-18. [32] M.A. Jamal, A.B. Yousaf, M.K. Khosa, M. Usman, M. Khan, Characterization and volumetric studies of magnetite (Fe3O4) nanofluids at different temperatures, J. Nano. Res. 37(2015) 28-35. [33] S. Ahangar Zonouzi, R. Khodabandeh, H. Safarzadeh, H. Aminfar, Y. Trushkina, M. Mohammadpourfard, M. Ghanbarpour, G. Salazar Alvarez, Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field, Exp. Thermal Fluid Sci. 91(2018) 155-165. [34] S. Yu, G.M. Chow, Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications, J. Mater. Chem. 14(2004) 2781-2786. [35] T. Lee, J.H. Lee, Y.H. Jeong, Flow boiling critical heat flux characteristics of magnetic nanofluid at atmospheric pressure and low mass flux conditions, Int. J. Heat Mass Transf. 56(2013) 101-106. [36] W. Xian-Ju, L. Hai, L. Xin-Fang, W. Zhou-Fei, L. Fang, Stability of TiO2 and Al2O3 nanofluids, Chin. Phys. Lett. 28(2011), 086601. [37] S. Zeppieri, J. Rodríguez, A. López de Ramos, Interfacial tension of alkane+water systems, J. Chem. Eng. Data 46(2001) 1086-1088. [38] J. Saien, S. Asadabadi, Alkyl chain length, counter anion and temperature effects on the interfacial activity of imidazolium ionic liquids:Comparison with structurally related surfactants, Fluid Phase Equilib. 386(2015) 134-139. [39] J. Saien, M. Kharazi, S. Asadabadi, Adsorption behavior of short alkyl chain imidazolium ionic liquids at n-butyl acetate+water interface:Experiments and modeling, Iran. J. Chem. Eng. 12(2015) 59-74. [40] T.F. Moghadam, S. Azizian, Synergistic effect of ZnO nanoparticles and triblock copolymer surfactant on the dynamic and equilibrium oil-water interfacial tension, Soft Matter 10(2014) 6192-6197. [41] Y. Liu, L. Qiao, Y. Xiang, R. Guo, Adsorption behavior of low-concentration imidazolium-based ionic liquid surfactant on silica nanoparticles, Langmuir 32(2016) 2582-2590. [42] Q. Lan, F. Yang, S. Zhang, S. Liu, J. Xu, D. Sun, Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions, Colloids Surf. A Physicochem. Eng. Asp. 302(2007) 126-135. [43] K. Birdi, Surface and Colloid Chemistry:Principles and Applications, CRC Press, 2009. [44] D. Möbius, R. Miller, V.B. Fainerman, Surfactants:Chemistry, Interfacial Properties, Applications, Elsevier, 2001. [45] V. Fainerman, E. Lucassen-Reynders, Adsorption of single and mixed ionic surfactants at fluid interfaces, Adv. Colloid Interf. Sci. 96(2002) 295-323. [46] D.J. McClements, S.M. Jafari, Improving emulsion formation, stability and performance using mixed emulsifiers:A review, Adv. Colloid Interf. Sci. 251(2018) 55-79. [47] B.P. Binks, J.A. Rodrigues, W.J. Frith, Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant, Langmuir 23(2007) 3626-3636. [48] N.K. Maurya, A. Mandal, Investigation of synergistic effect of nanoparticle and surfactant in macro emulsion based EOR application in oil reservoirs, Chem. Eng. Res. Des. 132(2018) 370-384. [49] T. Cosgrove, Colloid Science:Principles, Methods and Applications, John Wiley and Sons, 2010. [50] A.J. Worthen, L.M. Foster, J. Dong, J.A. Bollinger, A.H. Peterman, L.E. Pastora, S.L. Bryant, T.M. Truskett, C.W. Bielawski, K.P. Johnston, Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles, Langmuir 30(2014) 984-994. [51] O. Ozdemir, S.I. Karakashev, A.V. Nguyen, J.D. Miller, Adsorption and surface tension analysis of concentrated alkali halide brine solutions, Miner. Eng. 22(2009) 263-271. [52] J. Jiao, Y. Zhang, L. Fang, L. Yu, L. Sun, R. Wang, N. Cheng, Electrolyte effect on the aggregation behavior of 1-butyl-3-methylimidazolium dodecylsulfate in aqueous solution, J. Colloid Interface Sci. 402(2013) 139-145. [53] E. Lima, B. De Melo, L. Baptista, M. Paredes, Specific ion effects on the interfacial tension of water/hydrocarbon systems, Braz. J. Chem. Eng. 30(2013) 55-62. [54] H. Ma, M. Luo, L.L. Dai, Influences of surfactant and nanoparticle assembly on effective interfacial tensions, Phys. Chem. Chem. Phys. 10(2008) 2207-2213. [55] S. Azizian, Derivation of a simple equation for close to equilibrium adsorption dynamics of surfactants at air/liquid interface using statistical rate theory, Colloids Surf. A Physicochem. Eng. Asp. 380(2011) 107-110. [56] A. Ward, L. Tordai, Time-dependence of boundary tensions of solutions I. The role of diffusion in time-effects, J. Chem. Phys. 14(1946) 453-461. [57] S. Azizian, H. Motani, K. Shibata, T. Matsuda, T. Takiue, H. Matsubara, M. Aratono, Analysis of dynamic surface tension of tetraethyleneglycol monooctyl ether at air/water interface, Colloid Polym. Sci. 285(2007) 1699-1705. [58] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, John Wiley and Sons, New York, 2002. [59] N.R. Biswal, J.K. Singh, Interfacial behavior of nonionic Tween 20 surfactant at oil-water interfaces in the presence of different types of nanoparticles, RSC Adv. 6(2016) 113307-113314. |