[1] J. Chen, W. Xu, H. Zuo, X. Wu, J. E, T. Wang, F. Zhang, N. Lu, System development and environmental performance analysis of a solar-driven supercritical water gasification pilot plant for hydrogen production using life cycle assessment approach, Energy Convers. Manag. 184(2019) 60-73. [2] J. Luis Míguez, J. Porteiro, R. Pérez-Orozco, D. Patiño, S. Rodíguez, Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity, Appl. Energy 211(2018) 1282-1296. [3] F. Chu, L. Yang, X. Du, Y. Yang, Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column, Appl. Energy 190(2017) 1068-1080. [4] T. Thummakul, D. Gidaspow, P. Piumsomboon, B. Chalermsinsuwan, CFD simulation of CO2 sorption on K2CO3 solid sorbent in novel high flux circulating-turbulent fluidized bed riser:Parametric statistical experimental design study, Appl. Energy 190(2017) 122-134. [5] L. Liu, H. Chen, E. Shiko, X. Fan, Y. Zhou, G. Zhang, X. Luo, X. Hu, Low-cost DETA impregnation of acid-activated sepiolite for CO2 capture, Chem. Eng. J. 353(2018) 940-948. [6] M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption:A state-of-the-art review, Chem. Eng. Res. Des. 89(9) (2011) 1609-1624. [7] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sust. Energ. Rev. 39(2014) 426-443. [8] C. Zhao, X. Chen, C. Zhao, CO2 absorption using dry potassium-based sorbents with different supports, Energy Fuel 23(9) (2009) 4683-4687. [9] S.T. Bararpour, D. Karami, N. Mahinpey, Post-combustion CO2 capture using supported K2CO3:Comparing physical mixing and incipient wetness impregnation preparation methods, Chem. Eng. Res. Des. 137(2018) 319-328. [10] Y. Ju, C.-H. Lee, Dynamic modeling of a dual fluidized-bed system with the circulation of dry sorbent for CO2 capture, Appl. Energy 241(2019) 640-651. [11] C. Zhao, X. Chen, E.J. Anthony, X. Jiang, L. Duan, Y. Wu, W. Dong, C. Zhao, Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent, Prog. Energy Combust. Sci. 39(6) (2013) 515-534. [12] P. Wang, J. Sun, Y. Guo, C. Zhao, W. Li, G. Wang, S. Lei, P. Lu, Structurally improved, urea-templated, K2CO3-based sorbent pellets for CO2 capture, Chem. Eng. J. 374(2019) 20-28. [13] A. Jayakumar, A. Gomez, N. Mahinpey, Post-combustion CO2 capture using solid K2CO3:Discovering the carbonation reaction mechanism, Appl. Energy 179(2016) 531-543. [14] Y. Guo, C. Zhao, J. Sun, W. Li, P. Lu, Facile synthesis of silica aerogel supported K2CO3 sorbents with enhanced CO2 capture capacity for ultra-dilute flue gas treatment, Fuel 215(2018) 735-743. [15] H. Hayashi, N. Furuyashiki, S. Sugiyama, S. Hirano, N. Shigemoto, T. Nonaka, Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixedbed operations over K2CO3-on-carbon, Ind. Eng. Chem. Res. 37(1998) 185-191. [16] C. Zhao, X. Chen, C. Zhao, K2CO3/Al2CO3 for capturing CO2 in flue gas from power plants. Part 2:Regeneration behaviors of K2CO3/Al2CO3, Energy Fuel 26(2) (2012) 1406-1411. [17] O.-a. Jaiboon, B. Chalermsinsuwan, L. Mekasut, P. Piumsomboon, Effect of flow patterns/regimes on CO2 capture using K2CO3 solid sorbent in fluidized bed/circulating fluidized bed, Chem. Eng. J. 219(2013) 262-272. [18] C. Zhao, X. Chen, C. Zhao, Multiple-cycles behavior of K2CO3/Al2CO3 for CO2 capture in a fluidized-bed reactor, Energy Fuel 24(2) (2010) 1009-1012. [19] M. Nouri, G. Rahpaima, M.M. Nejad, M. Imani, Computational simulation of CO2 capture process in a fluidized-bed reactor, Comput. Chem. Eng. 108(2018) 1-10. [20] C.-K. Yi, S.-H. Jo, Y. Seo, J. Lee, C.K. Ryu, Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors, Int. J. Greenh. Gas Control 1(1) (2007) 31-36. [21] C. Sakaunnapaporn, B. Chalermsinsuwan, Computational fluid dynamics model of CO2 capture in fluidized bed reactors operating parameter optimization, Energy Procedia 138(2017) 518-523. [22] S. Yang, L. Zhang, K. Luo, J. Chew, DEM investigation of the axial dispersion behavior of a binary mixture in the rotating drum, Powder Technol. 330(2018) 93-104. [23] C. Zi, J. Sun, Y. Yang, et al., CFD simulation and hydrodynamics characterization of solids oscillation behavior in a circulating fluidized bed with sweeping bend return, Chem. Eng. J. 307(2017) 604-620. [24] C.G. Philippsen, A.C.F. Vilela, L.D. Zen, Fluidized bed modeling applied to the analysis of processes:Review and state of the art, J. Mater. Res. Tech. 4(2) (2015) 208-216. [25] A. Boemer, H. Qi, U. Renz, Eulerian simulation of bubble formation at a jet in a twodimensional fluidized bed, Int. J. Multiphase Flow 23(5) (1997) 927-944. [26] F.V.S. Lopes, C.A. Grande, A.E. Rodrigues, Activated carbon for hydrogen purification by pressure swing adsorption:Multicomponent breakthrough curves and PSA performance, Chem. Eng. Sci. 66(3) (2011) 303-317. [27] F. Augier, C. Laroche, E. Brehon, Application of computational fluid dynamics to fixed bed adsorption calculations:Effect of hydrodynamics at laboratory and industrial scale, Sep. Purif. Technol. 63(2) (2008) 466-474. [28] T. Li, A. Gel, S. Pannala, M. Shahnam, M. Syamlal, CFD simulations of circulating fluidized bed risers, part I:Grid study, Powder Technol. 254(2014) 170-180. [29] J. Cardoso, V. Silva, D. Eusébio, P. Brito, R.M. Boloy, L. Tarelho, J.L. Silveira, Comparative 2D and 3D analysis on the hydrodynamics behaviour during biomass gasification in a pilot-scale fluidized bed reactor, Renew. Energy 131(2019) 713-729. [30] T. Li, J. Grace, X. Bi, Study of wall boundary condition in numerical simulations of bubbling fluidized beds, Powder Technol. 203(3) (2010) 447-457. [31] N. Reuge, L. Cadoret, C. Coufort-Saudejaud, S. Pannala, M. Syamlal, B. Caussat, Multifluid Eulerian modeling of dense gas-solids fluidized bed hydrodynamics:Influence of the dissipation parameters, Chem. Eng. Sci. 63(22) (2008) 5540-5551. [32] T.W. Asegehegn, M. Schreiber, H.J. Krautz, Influence of two- and three-dimensional simulations on bubble behavior in gas-solid fluidized beds with and without immersed horizontal tubes, Powder Technol. 219(2012) 9-19. [33] N. Xie, F. Battaglia, S. Pannala, Effects of using two-versus three-dimensional computational modeling of fluidized beds:part II, Budget analysis, Powder Technol. 182(1) (2008) 14-24. [34] E. Esmaili, N. Mahinpey, Adjustment of drag coefficient correlations in three dimensional CFD simulation of gas-solid bubbling fluidized bed, Adv. Eng. Softw. 42(6) (2011) 375-386. [35] X. Lv, H. Li, Q. Zhu, Simulation of gas-solid flow in 2D/3D bubbling fluidized beds by combining the two-fluid model with structure-based drag model, Chem. Eng. J. 236(2014) 149-157. [36] M. Ayobi, S. Shahhosseini, Y. Behjat, Computational and experimental investigation of CO2 capture in gas-solid bubbling fluidized bed, Journal of the Taiwan Institute of Chemical Engineers 45(2) (2014) 421-430. [37] S. Wang, Q. Wang, J. Chen, G. Liu, H. Lu, L. Sun, Assessment of CO2 capture using potassium-based sorbents in circulating fluidized bed reactor by multiscale modeling, Fuel 164(2016) 66-72. [38] J. Chang, K. Zhang, Y. Yang, B. Wang, Q. Sun, Computational investigation of solid sorbent carbon dioxide capture in a fluidized bed reactor, Powder Technol. 275(2015) 94-104. [39] E. Abbasi, J. Abbasian, H. Arastoopour, CFD-PBE numerical simulation of CO2 capture using MgO-based sorbent, Powder Technol. 286(2015) 616-628. [40] H. Pan, X.Z. Chen, X.F. Liang, L.T. Zhu, Z.H. Luo, CFD simulations of gas-liquid-solid flow in fluidized bed reactors-a review, Powder Technol. 299(2016) 235-258. [41] T. Kawaguchi, T. Tanaka, Y. Tsuji, Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and threedimensional models), Powder Technol. (1998) 129-138. [42] Y. Ju, H.T. Oh, C.H. Lee, Sensitivity analysis of CO2 capture process in cyclic fluidizedbed with regeneration of solid sorbent, Chemical Engineering Journal 379(2020) 122291. [43] B. Chalermsinsuwan, P. Piumsomboon, D. Gidaspow, A computational fluid dynamics design of a carbon dioxide sorption circulating fluidized bed, AIChE J. 56(11) (2010) 2805-2824. [44] V. Rossbach, J. Utzig, R.K. Decker, D. Noriler, C. Soares, W. Martignoni, H. Meier, Gassolid flow in a ring-baffled CFB riser:Numerical and experimental analysis, Powder Technol. 345(2019) 521-531. [45] M.W. Seo, T.D.B. Nguyen, Y.I. Lim, S.D. Kim, S. Park, B.H. Song, Y.J. Kim, Solid circulation and loop-seal characteristics of a dual circulating fluidized bed:Experiments and CFD simulation, Chem. Eng. J. 168(2) (2011) 803-811. [46] Q. Qin, H. Liu, R. Zhang, L. Ling, M. Fan, B. Wang, Application of density functional theory in studying CO2 capture with TiO2-supported K2CO3 being an example, Appl. Energy 231(2018) 167-178. [47] A.N. Antzara, A. Arregi, E. Heracleous, A. Lemonidou, In-depth evaluation of a ZrO2 promoted CaO-based CO2 sorbent in fluidized bed reactor tests, Chem. Eng. J. 333(2018) 697-711. [48] T. Li, J.-F. Dietiker, L. Shadle, Comparison of full-loop and riser-only simulations for a pilot-scale circulating fluidized bed riser, Chem. Eng. Sci. 120(2014) 10-21. [49] Y. Lu, Y. Zhou, L. Yang, X. Hu, X. Luo, H. Chen, Verification of optimal models for 2D-full loop simulation of circulating fluidized bed, Adv. Powder Technol. 29(11) (2018) 2765-2774. [50] E. Ghadirian, J. Abbasian, H. Arastoopour, CFD simulation of gas and particle flow and a carbon capture process using a circulating fluidized bed (CFB) reacting loop, Powder Technol. 344(2019) 27-35. [51] J. Cardoso, V. Silva, D. Eusébio, P. Brito, L. Tarelho, Improved numerical approaches to predict hydrodynamics in a pilot-scale bubbling fluidized bed biomass reactor:A numerical study with experimental validation, Energy Convers. Manag. 156(2018) 53-67. [52] Y.-K. Park, H. Seo, K. Kim, D. Kim, D. Min, H. Kim, W. Choi, N. Kang, S. Park, An energy exchangeable solid-sorbent based multi-stage fluidized bed process for CO2 capture, Energy Procedia 114(2017) 2410-2420. [53] R.W. Breault, E.D. Huckaby, Parametric behavior of a CO2 capture process:CFD simulation of solid-sorbent CO2 absorption in a riser reactor, Appl. Energy 112(2013) 224-234. [54] B. Zhao, Q. Zhou, J. Wang, J. Li, CFD study of exit effect of high-density CFB risers with EMMS-based two-fluid model, Chem. Eng. Sci. 134(2015) 477-488. [55] M.A.E. Soberanis, A. Bassam, W. Mérida, Analysis of energy dissipation and turbulence kinetic energy using high frequency data for wind energy applications, J. Wind Eng. Ind. Aerodyn. 151(2016) 137-145. [56] C. Gorlé, J. van Beeck, P. Rambaud, G. Van Tendeloo, CFD modelling of small particle dispersion:The influence of the turbulence kinetic energy in the atmospheric boundary layer, Atmos. Environ. 43(3) (2009) 673-681. [57] K. Craig, R. Buckholz, G. Domoto, Effect of shear surface boundaries on stress for shearing flow of dry metal powders-An experimental study, Journal of Tribologytransactions of The Asme-J TRIBOL-TRANS ASME 109(1987) 232. [58] Savage, B. Stuart, S. Mckoen, Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders, J. Fluid Mech. 127(1983) 453-472. [59] S.J. Zhang, A.B. Y., Computational investigation of slugging behaviour in gas-fluidised beds.pdf, Powder Technology 123(2-3) (2002) 147-165. [60] T. Li, Y. Zhang, J.R. Grace, X. Bi, Numerical investigation of gas mixing in gas-solid fluidized beds, AIChE J. 106(2010) 35-37. [61] J. Jenkins, M. Louge, On the flux of fluctuation energy in a collisional grain flow at a flat, frictional wall, Phys. Fluids 9(1997) 2835-2840. [62] C. Wang, J. Zhu, Developments in the understanding of gas-solid contact efficiency in the circulating fluidized bed riser reactor:A review, Chin. J. Chem. Eng. 24(1) (2016) 53-62. [63] S. Cloete, S.T. Johansen, S. Amini, Investigation into the effect of simulating a 3D cylindrical fluidized bed reactor on a 2D plane, Powder Technol. 239(2013) 21-35. [64] T. Li, S. Pannala, M. Shahnam, CFD simulations of circulating fluidized bed risers, part II, Evaluation of differences between 2D and 3D simulations, Powder Technol. 254(2014) 115-124. [65] Y. Guo, C. Zhao, C. Li, Y. Wu, CO2 sorption and reaction kinetic performance of K2CO3/AC in low temperature and CO2 concentration, Chem. Eng. J. 260(2015) 596-604. [66] J.M. Coulson, J.F. Richardson, Flow of fluids through granular beds and packed column, Chem. Eng. 2(1968) 1-47. [67] Q. Chen, F. Rosner, A. Rao, Scott. Samuelsen, Simulation of elevated temperature solid sorbent CO2 capture for pre-combustion applications using computational fluid dynamics, Appl. Energy 237(2019) 314-325. |