[1] P. Liu, G. Cui, Y. Xiao, J. Chen, A new heuristic algorithm with the step size adjustment strategy for heat exchanger network synthesis, Energy 143(2018) 12-24. [2] X. Hong, Z. Liao, B. Jiang, J. Wang, Y. Yang, New transshipment type MINLP model for heat exchanger network synthesis, Chem. Eng. Sci. 173(2017) 537-559. [3] L. Kang, Y. Liu, Synthesis of flexible heat exchanger networks:A review, Chi. J. Chem. Eng. 27(7) (2019) 1485-1497. [4] S. Gu, L. Liu, L. Zhang, Y. Bai, S. Wang, J. Du, Heat exchanger network synthesis integrated with flexibility and controllability, Chi. J. Chem. Eng. 27(7) (2019) 1474-1484. [5] M.C. Aguitoni, L.V. Pavão, P.H. Siqueira, L. Jiménez, M.A.d.S.S. Ravagnani, Heat exchanger network synthesis using genetic algorithm and differential evolution, Comput. Chem. Eng. 117(2018) 82-96. [6] B. Linnhoff, E. Hindmarsh, The pinch design method for heat exchanger networks, Chem. Eng. Sci. 38(1983) 745-763. [7] J. Cerda, A.W. Westerberg, D. Mason, B. Linnhoff, Minimum utility usage in heat exchanger network synthesis. A transportation problem, Chem. Eng. Sci. 38(1983) 373-387. [8] R. Song, X. Feng, Y. Wang, Feasible heat recovery of interplant heat integration between two plants via an intermediate medium analyzed by interplant shifted composite curves, Appl. Therm. Eng. 94(2016) 90-98. [9] S. Ahmad, D.C.W. Hui, Heat recovery between areas of integrity, Comput. Chem. Eng. 15(1991) 809-832. [10] M. Bagajewicz, H. Rodera, Energy savings in the total site heat integration across many plants, Comput. Chem. Eng. 24(2000) 1237-1242. [11] M.J. Bagajewicz, A.F. Barbaro, On the use of heat pumps in total site heat integration, Comput. Chem. Eng. 27(2003) 1707-1719. [12] C. Chang, Y. Wang, X. Feng, Indirect heat integration across plants using hot water circles, Chi. J. Chem. Eng. 23(2015) 992-997. [13] C. Chang, X. Chen, Y. Wang, X. Feng, Simultaneous synthesis of multi-plant heat exchanger networks using process streams across plants, Comput. Chem. Eng. 101(2017) 95-109. [14] H. Pan, Y. Jin, S. Li, Multi-plant indirect heat integration based on the Alopex-based evolutionary algorithm, Energy 163(2018) 811-821. [15] H.-H. Chang, C.-T. Chang, B.-H. Li, Game-theory based optimization strategies for stepwise development of indirect interplant heat integration plans, Energy 148(2018) 90-111. [16] M.H. Bade, S. Bandyopadhyay, Minimization of thermal oil flow rate for indirect integration of multiple plants, Ind. Eng. Chemistry Res. 53(2014) 13146-13156. [17] C.W. Hui, S. Ahmad, Minimum cost heat recovery between separate plant regions, Comput. Chem. Eng. 18(1994) 711-728. [18] C. Chang, X. Chen, Y. Wang, X. Feng, Simultaneous optimization of multi-plant heat integration using intermediate fluid circles, Energy 121(2017) 306-317. [19] C. Chang, Y. Wang, J. Ma, X. Chen, X. Feng, An energy hub approach for direct interplant heat integration, Energy 159(2018) 878-890. [20] T. Laukkanen, A. Seppälä, Interplant heat exchanger network synthesis using nanofluids for interplant heat exchange, Appl. Therm. Eng. 135(2018) 133-144. [21] Y. Wang, C. Chang, X. Feng, A systematic framework for multi-plants heat integration combining direct and indirect heat integration methods, Energy 90(2015) 56-67. |