[1] H. Li, L. Wang, Y. He, Y. Hu, J. Zhu, B. Jiang, Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids, Appl. Therm. Eng. 88(2015) 363-368.[2] M. Chen, Y. He, X. Wang, Y. Hu, Complementary enhanced solar thermal conversion performance of core-shell nanoparticles, Appl. Energy 211(2018) 735-742.[3] X. Wang, Y. He, G. Cheng, L. Shi, X. Liu, J. Zhu, Direct vapor generation through localized solar heating via carbon-nanotube nanofluid, Energy Convers. Manag. 130(2016) 176-183.[4] X. Liu, Y. Xuan, Full-spectrum volumetric solar thermal conversion via photonic nanofluids, Nano 9(39) (2017) 14854-14860.[5] X. Liu, Y. Xuan, Defects-assisted solar absorption of plasmonic nanoshell-based nanofluids, Sol. Energy 146(2017) 503-510.[6] J. Huang, Y. He, L. Wang, Y. Huang, B. Jiang, Bifunctional Au@TiO2 core-shell nanoparticle films for clean water generation by photocatalysis and solar evaporation, Energy Convers. Manag. 132(2017) 452-459.[7] C. Qi, J. Hu, M. Liu, L. Guo, Z. Rao, Experimental study on thermo-hydraulic performances of CPU cooled by nanofluids, Energy Convers. Manag. 153(2017) 557-565.[8] C. Qi, Y. Wan, L. Liang, Z. Rao, Y. Li, Numerical and experimental investigation into the effects of nanoparticle mass fraction and bubble size on boiling heat transfer of TiO2-water nanofluid, ASME J. Heat Transf. 138(8) (2016) 081503.[9] Y. Hu, H. Li, Y. He, L. Wang, Role of nanoparticles on boiling heat transfer performance of ethylene glycol aqueous solution based graphene nanosheets nanofluid, Int. J. Heat Mass Transf. 96(2016) 565-572.[10] Y. Hu, Y. He, Z. Zhang, B. Jiang, Y. Huang, Natural convection heat transfer for eutectic binary nitrate salt based Al2O3 nanocomposites in solar power systems, Renew. Energy 114((2017) 686-696.[11] Y. Hu, Y. He, S. Wang, Q. Wang, H.I. Schlaberg, Experimental and numerical investigation on natural convection heat transfer of TiO2-water nanofluids in a square enclosure, ASME J. Heat Transf. 136(2) (2014) 022502.[12] X. Wang, Y. Hu, T. Li, Y. He, Experimental investigation of graphene nanofluid and numerical simulation of its natural convection in a square enclosure, Nanosci. Nanotechnol. Lett. 9(5) (2017) 640-649.[13] C. Qi, L. Yang, G. Wang, Numerical study on convective heat transfer enhancement in horizontal rectangle enclosures filled with Ag-Ga nanofluid, Nanoscale Res. Lett. 12(1) (2017) 326-335.[14] C. Qi, G. Wang, L. Yang, Y. Wan, Z. Rao, Two-phase lattice Boltzmann simulation of the effects of base fluid and nanoparticle size on natural convection heat transfer of nanofluid, Int. J. Heat Mass Transf. 105(2017) 664-672.[15] C. Qi, L. Liang, Z. Rao, Study on the flow and heat transfer of liquid metal based nanofluid with different nanoparticle radiuses using two-phase lattice Boltzmann method, Int. J. Heat Mass Transf. 94(2016) 316-326.[16] C. Qi, G. Wang, Y. Ma, L. Guo, Experimental research on stability and natural convection of TiO2-water nanofluid in enclosures with different rotation angles, Nanoscale Res. Lett. 12(1) (2017) 396-410.[17] C. Qi, Y. He, Y. Hu, J. Yang, F. Li, Y. Ding, Natural convection of Cu-Gallium nanofluid in enclosures, ASME J. Heat Transf. 133(12) (2011) 122504.[18] M. Sheikholeslami, Numerical simulation of magnetic nanofluid natural convection in porous media, Phys. Lett. A 381(5) (2017) 494-503.[19] M. Sheikholeslami, T. Hayat, A. Alsaedi, On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders, Int. J. Heat Mass Transf. 115((2017) 981-991.[20] J.C. Umavathi, O. Ojjela, K. Vajravelu, Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy-Forchheimer-Brinkman model, Int. J. Therm. Sci. 111(2017) 511-524.[21] S. Kakac, A. Pramuanjaroenkij, Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids-A state-of-the-art review, Int. J. Therm. Sci. 100(2016) 75-97.[22] A. Azari, M. Kalbasi, M. Derakhshandeh, M. Rahimi, An experimental study on nanofluids convective heat transfer through a straight tube under constant heat flux, Chin. J. Chem. Eng. 21(10) (2013) 1082-1088.[23] M. Hatami, M.J.Z. Ganji, I. Sohrabiasl, D. Jing, Optimization of the fuel rod's arrangement cooled by turbulent nanofluids flow in pressurized water reactor (PWR), Chin. J. Chem. Eng. 25(6) (2016) 722-731.[24] T. Perarasu, M. Arivazhagan, P. Sivashanmugam, Experimental and CFD heat transfer studies of Al2O3-water nanofluid in a coiled agitated vessel equipped with propeller, Chin. J. Chem. Eng. 21(11) (2013) 1232-1243.[25] C. Qi, L. Yang, T. Chen, Z. Rao, Experimental study on thermo-hydraulic performances of TiO2-H2O nanofluids in a horizontal elliptical tube, Appl. Therm. Eng. 129(2018) 1315-1324.[26] C. Qi, Y.L. Wan, C.Y. Li, D.T. Han, Z.H. Rao, Experimental and numerical research on the flow and heat transfer characteristics of TiO2-water nanofluids in a corrugated tube, Int. J. Heat Mass Transf. 115(Part B) (2017) 1072-1084.[27] C. Qi, C. Li, G. Wang, Experimental study on the flow and heat transfer characteristics of TiO2-water nanofluids in a spirally fluted tube, Nanoscale Res. Lett. 12(1) (2017) 516-527.[28] A.A.A. Arani, H. Aberoumand, A. Jafarimoghaddam, S. Aberoumand, Mixed convection heat transfer:an experimental study on Cu/heat transfer oil nanofluids inside annular tube, Heat Mass Transf. 53(9) (2017) 2875-2884.[29] P. Naphon, S. Wiriyasart, T. Arisariyawong, T. Nualboonrueng, Magnetic field effect on the nanofluids convective heat transfer and pressure drop in the spirally coiled tubes, Int. J. Heat Mass Transf. 110(2017) 739-745.[30] P. Naphon, S. Wiriyasart, Pulsating TiO2/water nanofluids flow and heat transfer in the spirally coiled tubes with different magnetic field directions, Int. J. Heat Mass Transf. 115((2017) 537-543.[31] P. Naphon, T. Arisariyawong, T. Nualboonrueng, Nanofluids heat transfer and flow analysis in vertical spirally coiled tubes using Eulerian two-phase turbulent model, Heat Mass Transf. 53(7) (2017) 1-12.[32] A.A.R. Darzi, M. Farhadi, K. Sedighi, Experimental investigation of convective heat transfer and friction factor of Al2O3/water nanofluid in helically corrugated tube, Exp. Thermal Fluid Sci. 57(2014) 188-199.[33] A.A.R. Darzi, M. Farhadi, K. Sedighi, S. Aallahyari, M.A. Delavar, Turbulent heat transfer of Al2O3-water nanofluid inside helically corrugated tubes:Numerical study, Int. Commun. Heat Mass Transf. 41(2013) 68-75.[34] A.A.R. Darzi, M. Farhadi, K. Sedighi, R. Shafaghat, K. Zabihi, Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes, Int. Commun. Heat Mass Transf. 39(9) (2012) 1425-1434.[35] J.C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, London, 1873.[36] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf. 11(2) (1998) 151-170.[37] B. Sun, A. Yang, D. Yang, Experimental study on the heat transfer and flow characteristics of nanofluids in the built-in twisted belt external thread tubes, Int. J. Heat Mass Transf. 107(2017) 712-722.[38] S.J. Kline, The description of uncertainties in single sample experiments, Mech. Eng. 75(1953) 3-9.[39] S.M. Yang, W.Q. Tao, Heat Transfer, 4th ed. Higher Education Press, Beijing, 2012(in Chinese).[40] V. Gnielinski, New equations for heat and mass-transfer in turbulent pipe and channel flow, Int. Chem. Eng. 16(2) (1976) 359-368.[41] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transf. 43(19) (2000) 3701-3707. |