[1] G. Kazas, E. Fabrizio, M. Perino, Energy demand profile generation with detailed time resolution at an urban district scale:A reference building approach and case study, Appl. Energy 193(2017) 243-262. [2] W. Shen, L. Dong, S. Wei, et al., Systematic design of an extractive distillation for maximum-boiling azeotropes with heavy entrainers, AIChE J. 61(2015) 3898-3910. [3] A. Yang, S. Sun, A. Eslamimanesh, et al., Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique, Energy. 172(2019) 320-332. [4] J. Gao, C. Li, W. Liu, et al., Process simulation and energy integration in the mineral carbonation of blast furnace slag, Chin. J. Chem. Eng. 27(2018) 157-167. [5] F. Cheng, L. Cui, J.D. Miller, et al., Aluminum leaching from calcined coal waste using hydrochloric acid solution, Miner. Process. Extr. Metall. Rev. 33(2012) 391-403. [6] C. Guo, Z. Shen, Q. Hu, et al., The solvothermal synthesis, structure and properties of Al2O3·TiO2 mesoporous material, Mater. Chem. Phys. 151(2015) 288-294. [7] B. Zhou, J. Zhou, T. Hu, et al., Phase transformation mechanism in activation of highalumina fly ash with Na2CO3, Mater. Res. Express. 6(2018), 015502. [8] X.W. Yao, K.L. Xu, Y. Li, Experimental investigation of performance properties and agglomeration behavior of fly ash from gasification of corncobs, J. Cent. South Univ. 24(2017) 496-505. [9] Y. Chen, Numerical Simulation Study on Waste Heat Recovery System of High Temperature Steel Slag, PhD Thesis, Shandong University, 2014. [10] T. Atmakidis, E.Y. Kenig, Numerical analysis of mass transfer in packed-bed reactors with irregular particle arrangements, Chem. Eng. Sci. 81(2012) 77-83. [11] R. Sundaresan, A.K. Kolar, Axial heat transfer correlations in a circulating fluidized bed riser, Appl. Therm. Eng. 50(2013) 985-996. [12] H. Yoshida, K. Fukui, K. Yoshida, et al., Particle separation by Iinoya's type gas cyclone, Powder Technol. 118(2001) 16-23. [13] B.G. García, G.S. Grasa, M.A. Carreño, et al., Modeling of the deactivation of CaO in a carbonate loop at high temperatures of calcination, Ind. Eng. Chem. Res. 47(2008) 9256-9262. [14] M. Xu, H. Liu, et al., Intensification of deep hydrodesulfurization through a two-stage combination of monolith and trickle bed reactors, Chin. J. Chem. Eng. 22(2014) 888-897. [15] C. Dai, F. Gu, Thermophoresis effects on gas-particle phases flow behaviors in entrained flow coal gasifier using Eulerian model, Chin. J. Chem. Eng. 25(2017) 712-721. [16] G. Karthik, V.V. Buwa, Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed, AIChE J. 63(2017) 366-377. [17] H.P. Zhu, Z.Y. Zhou, R.Y. Yang, et al., Discrete particle simulation of particulate systems:Theoretical developments, Chem. Eng. Sci. 63(2007) 5728-5770. [18] J. Ding, D. Gidaspow, Bubbling fluidization model using kinetic theory of granular flow, AIChE J. 36(2010) 523-538. [19] Y.Q. Feng, A.B. Yu, Microdynamic modelling and analysis of the mixing and segregation of binary mixtures of particles in gas fluidization, Chem. Eng. Sci. 62(2007) 256-268. [20] S. Vun, J. Naser, P. Witt, Extension of the kinetic theory of granular flow to include dense quasi-static stresses, Powder Technol. 204(2010) 11-20. [21] S. Benyahia, M. Syamlal, T.J. O'Brien, Study of the ability of multiphase continuum models to predict core-annulus flow, AIChE J. 53(2007) 2549-2568. [22] D.W. Green, R.H. Perry, Perry's Chemical Engineers' Handbook, Perry, 1997. [23] J. Soria, D. Gauthier, G. Flamant, et al., Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD, Waste Manag. 43(2015) 176-187. [24] X. Chen, P. Han, A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms, Int. J. Heat Fluid Flow 21(2000) 463-467. [25] D. Gidaspow, Multiphase Flow and Fluidization:Continuum & Kinetic Theory Description, Academic Press, 19941-29. [26] M.J.V. Goldschmidt, J.A.M. Kuipers, W.P.M.V. Swaaij, Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow:effect of coefficient of restitution on bed dynamics, Chem. Eng. Sci. 56(2001) 571-578. [27] M. Yoon, J. Hwang, J. Lee, et al., Large-scale motions in a turbulent channel flow with the slip boundary condition, Int. J. Heat Fluid Flow 61(2016) 96-107. [28] P. Fede, O. Simonin, A. Ingram, 3D numerical simulation of a lab-scale pressurized dense fluidized bed focussing on the effect of the particle-particle restitution coefficient and particle-wall boundary conditions, Chem. Eng. Sci. 142(2016) 215-235. [29] M. Ramzan, M. Farooq, T. Hayat, J.D. Chung, Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition, J. Mol. Liq. 221(2016) 394-400. |