[1] K. Dalane, Z.D. Dai, G. Mogseth, M. Hillestad, L.Y. Deng, Potential applications of membrane separation for subsea natural gas processing:A review, J. Nat. Gas Sci. Eng. 39(2017) 101-117. [2] R. Muñoz, L. Meier, I. Diaz, D. Jeison, A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading, Rev. Environ. Sci. Biotechnol. 14(2015) 727-759. [3] J. Schrier, Carbon dioxide separation with a two-dimensional polymer membrane, ACS Appl. Mater. Interfaces 4(2012) 3745-3752. [4] Y. Zhang, J. Sunarso, S.M. Liu, R. Wang, Current status and development of membranes for CO2/CH4 separation:A review, Int. J. Greenhouse Gas Control 12(2013) 84-107. [5] H.Q. Yang, Z.H. Xu, M.H. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture:A review, J. Environ. Sci. (Beijing, China) 20(2008) 14-27. [6] V. Martin-Gil, M.Z. Ahmad, R. Castro-Muñoz, V. Fila, Economic framework of membrane technologies for natural gas applications, Sep. Purif. Rev. 48(2019) 298-324. [7] R.V. Siriwardane, M.S. Shen, E.P. Fisher, J.A. Poston, Adsorption of CO2 on molecular sieves and activated carbon, Energy Fuel 15(2001) 279-284. [8] G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325(2009) 1652-1654. [9] G. Xu, L. Li, Y.P. Yang, L.H. Tian, T. Liu, K. Zhang, A novel CO2 cryogenic liquefaction and separation system, Energy 42(2012) 522-529. [10] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation:a review/state of the art, Ind. Eng. Chem. Res. 48(2009) 4638-4663. [11] H. Strathmann, L. Giorno, E. Drioli, Introduction to Membrane Science and Technology, Wiley-VCH Weinheim, 2011. [12] W. Li, X. Zheng, Z.H. Dong, C.Y. Li, W.S. Wang, Y.G. Yan, J. Zhang, Molecular dynamics simulations of CO2/N2 separation through two-dimensional graphene oxide membranes, J. Phys. Chem. C 120(2016) 26061-26066. [13] P. Wang, W. Li, C.C. Du, X. Zheng, X.L. Sun, Y.G. Yan, J. Zhang, CO2/N2 separation via multilayer nanoslit graphene oxide membranes:Molecular dynamics simulation study, Comput. Mater. Sci. 140(2017) 284-289. [14] S. Oyama, D. Lee, P. Hacarlioglu, R. Saraf, Theory of hydrogen permeability in nonporous silica membranes, J. Membr. Sci. 244(2004) 45-53. [15] G.X. Li, Y.L. Li, H.B. Liu, Y.B. Guo, Y.J. Li, D.B. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. 46(2010) 3256-3258. [16] Y. Jiao, A. Du, M. Hankel, Z. Zhu, V. Rudolph, S.C. Smith, Graphdiyne:A versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(2011) 11843-11845. [17] S.W. Cranford, M.J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(2012) 4587-4593. [18] L. Zhu, Y.K. Jin, Q.Z. Xue, X.F. Li, H.X. Zheng, T.T. Wu, C.C. Ling, Theoretical study of a tunable and strain-controlled nanoporous graphenylene membrane for multifunctional gas separation, J. Mater. Chem. A 4(2016) 15015-15021. [19] S.W. Deng, H. Hu, G.L. Zhuang, X. Zhong, J.G. Wang, A strain-controlled C2N monolayer membrane for gas separation in PEMFC application, Appl. Surf. Sci. 441(2018) 408-414. [20] S. De Silva, A. Du, W. Senadeera, Y. Gu, Strained graphitic carbon nitride for hydrogen purification, J. Membr. Sci. 528(2017) 201-205. [21] S.W. Cranford, D.B. Brommer, M.J. Buehler, Extended graphynes:Simple scaling laws for stiffness, strength and fracture, Nanoscale 4(2012) 7797-7809. [22] Y.L. Yang, X.M. Xu, Mechanical properties of graphyne and its family-A molecular dynamics investigation, Comput. Mater. Sci. 61(2012) 83-88. [23] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117(1995) 1-19. [24] D.S.M. William, L. Jorgensen, Julian Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118(1996) 11225-11236. [25] J.I.S. Jeffrey, J. Potoff, Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen, AICHE J. 47(2001) 1676-1682. [26] S. Lin, M.J. Buehler, Mechanics and molecular filtration performance of graphyne nanowebmembranesforselectivewaterpurification, Nanoscale5(2013)11801-11807. [27] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool, Model. Simul. Mater. Sci. Eng. 18(2010), 015012. [28] B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92(1990) 508-517. [29] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113(2000) 7756-7764. [30] H. Liu, S. Dai, D.E. Jiang, Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics, Nanoscale 5(2013) 9984-9987. [31] C.Z.Sun, B.F.Bai, Fast masstransportacrosstwo-dimensional graphene nanopores:Nonlinear pressure-dependent gas permeation flux, Chem. Eng. Sci. 165(2017) 186-191. [32] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113(2000) 9901-9904. [33] S. Arrhenius, Über die Reaktionsgeschwindigkeit bei der inversion von Rohrzucker durch Säuren, Z. Phys. Chem. 4(1889) 226-248. [34] S. Arrhenius, Über die dissociationswärme und den einfluss der temperatur auf den dissociationsgrad der elektrolyte, Z. Phys. Chem. 4(1889) 96-116. [35] S. Blankenburg, M. Bieri, R. Fasel, K. Mullen, C.A. Pignedoli, D. Passerone, Porous graphene as an atmospheric nanofilter, Small 6(2010) 2266-2271. [36] S.F. Wang, X.Q. Li, H. Wu, Z.Z. Tian, Q.P. Xin, G.W. He, D.D. Peng, S.L. Chen, Y. Yin, Z.Y. Jiang, M.D. Guiver, Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci. 9(2016) 1863-1890. [37] T. Ohba, The thinnest molecular separation sheet by graphene gates of single-walled carbon nanohorns, ACS Nano 8(2014) 11313-11319. [38] H. Li, Z.N. Song, X.J. Zhang, Y. Huang, S.G. Li, Y.T. Mao, H.J. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation, Science 342(2013) 95-98. [39] C.Z. Sun, M.S. Boutilier, H. Au, P. Poesio, B.F. Bai, R. Karnik, N.G. Hadjiconstantinou, Mechanisms of molecular permeation through nanoporous graphene membranes, Langmuir 30(2014) 675-682. [40] L. Zhu, Q. Xue, X. Li, T. Wu, Y. Jin, W. Xing, C2N:an excellent two-dimensional monolayer membrane for He separation, J. Mater. Chem. A 3(2015) 21351-21356. [41] C.L. Chi, X.R. Wang, Y.W. Peng, Y.H. Qian, Z.G. Hu, J.Q. Dong, D. Zhao, Facile preparation of graphene oxide membranes for gas separation, Chem. Mater. 28(2016) 2921-2927. [42] Z. Yuan, R.P. Misra, A.G. Rajan, M.S. Strano, D. Blankschtein, Analytical prediction of gas permeation through graphene nanopores of varying sizes:understanding transitions across multiple transport regimes, ACS Nano 13(2019) 11809-11824. [43] Z. Yuan, A. Govind Rajan, R.P. Misra, L.W. Drahushuk, K.V. Agrawal, M.S. Strano, D. Blankschtein, Mechanism and prediction of gas permeation through sub-nanometer graphenepores:comparisonoftheoryandsimulation, ACS Nano11(2017)7974-7987. |